【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(A在B的左側),頂點為C.
(1)求A,B兩點的坐標;
(2)若將該拋物線向上平移t個單位后,它與x軸恰好只有一個交點,求t的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當x=0時,y2﹣y1=4
④2AB=3AC.
其中正確結論是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,點D為⊙O上一點,連結AD、OD、BD,∠BAD=∠B=30°.
(1)求證:BD是⊙O的切線.
(2)若OA=8,求OA、OD與圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:設一元二次方程(a≠0)的兩根為 , 則兩根與方程的系數(shù)之間有如下關系: , .根據(jù)該材料完成下列填空:
已知m,n是方程的兩根,則
(1)=____, mn=____;
(2)=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+3與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標為.動點P在拋物線上運動(不與點A、B重合),過點P作y軸的平行線,交直線AB于點Q.當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側,連結PM.設點P的橫坐標為m.
(1)求b、c的值.
(2)當點N落在直線AB上時,直接寫出m的取值范圍.
(3)當點P在A、B兩點之間的拋物線上運動時,設正方形PQMN的周長為C,求C與m之間的函數(shù)關系式,并寫出C隨m增大而增大時m的取值范圍.
(4)當△PQM與坐標軸有2個公共點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,矩形OABC如圖所示放置,點A在x軸上,點B的坐標為(n,1)(n>0),將此矩形繞O點逆時針旋轉(zhuǎn)90°得到矩形OA′B′C′,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、A′、C′三點.
(1)求此拋物線的解析式(a、b、c可用含n的式子表示);
(2)若拋物線對稱軸是x=1的一條直線,直線y=kx+2(k≠0)與拋物線相交于兩點D(x1,y1)、E(x2、y2)(x1<x2),當|x1﹣x2|最小時,求拋物線與直線的交點D和E的坐標;
(3)若拋物線對稱軸是x=1的一條直線,如圖2,點M是拋物線的頂點,點P是y軸上一動點,點Q是坐標平面內(nèi)一點,四邊形APQM是以PM為對角線的平行四邊形,點Q′與點Q關于直線CM對稱,連接MQ′、PQ′,當△PMQ′與平行四邊形APQM重合部分的面積是平行四邊形的面積的時,求平行四邊形APQM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個常見鐵夾的側面示意圖,OA,OB表示鐵夾的兩個面,C是軸,CD⊥OA于點D,已知DA=15mm,DO=24mm,DC=10mm,
我們知道鐵夾的側面是軸對稱圖形,請求出A、B兩點間的距離。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】手機經(jīng)銷商計劃購進蘋果手機的 iPhone8、 iphone8Plus、 iphoneX三款手機共60部,每款手機至少要購進10部,且恰好用完購機款360000元.設購進iPhone8手機部,iPhone8Plus手機部.三款手機的進價和售價如表:
手機型號 | iPhone8 | iphone8Plus | iphoneX |
進價(元部) | 4600 | 6100 | 7600 |
售價(元部) | 5200 | 6800 | 8600 |
(1)用含,的式子表示購進iphoneX手機的部數(shù).
(2)求出與之間的函數(shù)關系式.
(3)假設所購進手機全部售出.
①求出預估利潤(元)與(部)的函數(shù)關系式.
②求出預估利潤的最大值,并寫出此時購進三款手機各多少部.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀,再填空解答:
方程的根為;
方程的根為.
⑴.方程的根是
⑵.若是關于x的一元二次方程的兩個實數(shù)根,那么與系數(shù)a、b、c的關系是:
⑶.如果是方程的兩個根,根據(jù)⑵所得的結論,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com