【題目】如圖,點(diǎn)A是反比例函數(shù)y= (>0)的圖象上任意一點(diǎn),AB∥x軸交反比例函數(shù)y=﹣ 的圖象于點(diǎn)B,以AB為邊作平行四邊形ABCD,其中C,D在x軸上,則平行四邊形ABCD的面積為( )
A.2
B.3
C.4
D.5
【答案】D
【解析】解:設(shè)A的縱坐標(biāo)是b,則B的縱坐標(biāo)也是b. 把y=b代入y= 得,b= ,則x= ,即A的橫坐標(biāo)是 ,
同理可得:B的橫坐標(biāo)是:﹣ .
則AB= ﹣(﹣ )= .
則S□ABCD= ×b=5.
故選D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用比例系數(shù)k的幾何意義和平行四邊形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一漁船自西向東追趕魚群,在A處測得某無名小島C在北偏東60°方向上,前進(jìn)2海里到達(dá)B點(diǎn),此時(shí)測得無名小島C在東北方向上.已知無名小島周圍2.5海里內(nèi)有暗礁,問漁船繼續(xù)追趕魚群有無觸礁危險(xiǎn)?(參考數(shù)據(jù): =1.414, =1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長,交AB延長線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD=°時(shí),四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥CD,垂足為E,AF⊥BC,垂足為F,AD=4,BF=3,∠EAF=60°,設(shè) = ,如果向量 =k (k≠0),那么k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角尺的直角頂點(diǎn)放在直線a上,a∥b,∠1=50°,∠2=60°,則∠3的度數(shù)為( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°.AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連結(jié)CD.過點(diǎn)B作BG⊥CD,分別交CD、CA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF,給出以下四個(gè)結(jié)論:① = ;②若點(diǎn)D是AB的中點(diǎn),則AF= AB;③當(dāng)B、C、F、D四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若 = ,則S△ABC=9S△BDF , 其中正確的結(jié)論序號是( )
A.①②
B.③④
C.①②③
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實(shí)數(shù)).其中正確結(jié)論的有( )
A.①②③
B.①③④
C.③④⑤
D.②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是圓O的直徑,AB、AD是圓O的弦,且AB=AD,連結(jié)BC、DC.
(1)求證:△ABC≌△ADC;
(2)延長AB、DC交于點(diǎn)E,若EC=5cm,BC=3cm,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點(diǎn),且AB=CD,下列結(jié)論中正確的有(填上所有正確結(jié)論的序號) ①GH∥DC;
②EG∥AD;
③EH=FG;
④當(dāng)∠ABC與∠DCB互余時(shí),四邊形EFGH是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com