精英家教網 > 初中數學 > 題目詳情

【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD,下列結論中正確的有(填上所有正確結論的序號) ①GH∥DC;
②EG∥AD;
③EH=FG;
④當∠ABC與∠DCB互余時,四邊形EFGH是正方形.

【答案】①③④
【解析】解:
∵E、F、G、H分別是BD、BC、AC、AD的中點,
∴EH= AB,FG= AB,GH= DC,EF= DC,GH∥DC,
∵AB=CD,
∴EH=FG=GH=EF,
∴四邊形EFGH是菱形,
所以選項①③正確;
當∠ABC與∠DCB互余時,則∠GFC與∠EFB互余,EF⊥FG,四邊形EFGH是正方形,所以④正確;
若BC∥AD,設AC與BD交于O,
,
,
,
∴AD∥EG,
但BC與AD未必平行,故②不正確.
所以答案是:①③④.
【考點精析】認真審題,首先需要了解正方形的判定方法(先判定一個四邊形是矩形,再判定出有一組鄰邊相等;先判定一個四邊形是菱形,再判定出有一個角是直角),還要掌握平行線分線段成比例(三條平行線截兩條直線,所得的對應線段成比例)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點A是反比例函數y= (>0)的圖象上任意一點,AB∥x軸交反比例函數y=﹣ 的圖象于點B,以AB為邊作平行四邊形ABCD,其中C,D在x軸上,則平行四邊形ABCD的面積為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】對于平面直角坐標系中任意兩點P1(x1 , y1)、P2(x2 , y2),稱|x1﹣x2|+|y1﹣y2|為P1、P2兩點的直角距離,記作:d(P1 , P2).P0(2,﹣3)是一定點,Q(x,y)是直線y=kx+b上的一動點,稱d(P0 , Q)的最小值為P0到直線y=kx+b的直角距離.若P(a,﹣3)到直線y=x+1的直角距離為6,則a=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=a(x﹣m)2+2m﹣2(其中m>1)頂點為P,與y軸相交于點A(0,m﹣1).連接并延長PA、PO分別與x軸、拋物線交于點B、C,連接BC,將△PBC繞點P逆時針旋轉得△PB′C′,使點C′正好落在拋物線上.

(1)該拋物線的解析式為(用含m的式子表示);
(2)求證:BC∥y軸;
(3)若點B′恰好落在線段BC′上,求此時m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在剛剛閉幕的2016全國“兩會”,民生話題依然是社會焦點,某市記者為了了解百姓對“兩會民生話題”的聚焦點,隨機調查了部分市民,并對調查結果進行整理.繪制了如圖所示的統(tǒng)計圖表(不完整).
頻數分布表

組別

焦點話題

頻數(人數)

A

醫(yī)療衛(wèi)生

100

B

食品安全

m

C

教育住房

40

D

社會保障

80

E

生態(tài)環(huán)境

n

F

其他

60

請根據圖表中提供的信息解答下列問題:
(1)填空:m= , n= . 扇形統(tǒng)計圖中E組,F組所占的百分比分別為
(2)該市現有人口大約800萬,請你估計其中關注B組話題的人數;
(3)若在這次接受調查的市民中,隨機抽查一人,則此人關注A組話題的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)將△ABC繞著點B順時針旋轉90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉過程中所掃過的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知購買1個足球和1個籃球共需130元,購買2個足球和1個籃球共需180元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費用不超過4000元,問最多可買多少個籃球?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列圖形是將正三角形按一定規(guī)律排列,則第4個圖形中所有正三角形的個數有( 。

A.160
B.161
C.162
D.163

查看答案和解析>>

同步練習冊答案