【題目】已知如圖,∠ADB=∠CDB=∠BAC=45°,結(jié)論:①∠ABC=90°,②AB=BC,③AD2+DC2=2AB2,④AD+DC=BD,其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
如圖,作BM⊥DA交DA的延長(zhǎng)線于M,BN⊥CD于N,AC交BD于點(diǎn)O.首先證明△ABC是等腰直角三角形,再證明四邊形BMDN是正方形,△BMA≌△BNC即可解決問(wèn)題;
解:如圖,作BM⊥DA交DA的延長(zhǎng)線于M,BN⊥CD于N,AC交BD于點(diǎn)O.
∵∠OAB=∠ODC,∠AOB=∠DOC,
∴△AOB∽△DOC,
∴,
∴,
∵∠AOD=∠BOC,
∴△AOD∽△BOC,
∴∠BCO=∠ADO=45°,
∴∠BAC=∠BCA=45°,
∴∠ABC=90°,BA=BC,故①②正確,
∴AD2+CD2=AC2=AB2+BC2=2AB2,故③正確,
∵∠M=∠BND=∠MDN=90°,
∴四邊形BMDN是矩形,
∵BD平分∠ADC,BM⊥AD,BN⊥DC,
∴BM=BN,
∴四邊形BMDN是正方形,
∴DM=DN,
∵AB=BC,BM=BN,
∴Rt△BMA≌Rt△BNC(HL),
∴AM=AN,
∴AD+DC=DM﹣AM+DN﹣CN=2DM=BD,故④正確,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為3正方形ABCD的外部作Rt△AEF,且AE=AF=1,連接DE,BF,BD,則DE2+BF2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購(gòu)買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)本次一共調(diào)查了多少名購(gòu)買者?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購(gòu)買者,請(qǐng)你估計(jì)使用A和B兩種支付方式的購(gòu)買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是長(zhǎng)沙九龍倉(cāng)國(guó)際金融中心,位于長(zhǎng)沙市黃興路與解放路交會(huì)處的東北角,投資160億元人民幣,總建筑面積達(dá)98萬(wàn)平方米,中心主樓BC高452m,是目前湖南省第一高樓,大樓頂部有一發(fā)射塔AB,已知和BC處于同一水平面上有一高樓DE,在樓DE底端D點(diǎn)測(cè)得A的仰角為α,tanα=,在頂端E點(diǎn)測(cè)得A的仰角為45°,AE=140m
(1)求兩樓之間的距離CD;
(2)求發(fā)射塔AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),過(guò)點(diǎn)O作OD⊥AB,交BC的延長(zhǎng)線于D,交AC于點(diǎn)E,F是DE的中點(diǎn),連接CF.
(1)求證:CF是⊙O的切線.
(2)若∠A=22.5°,求證:CE=CB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB為12m,拱高CD為4m.
(1)求拱橋的半徑;
(2)有一艘寬5m的貨船,船艙頂部為長(zhǎng)方形,并高出水面3.6m,求此貨船是否能順利通過(guò)拱橋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支持國(guó)家南水北調(diào)工程建設(shè),小王家由原來(lái)養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場(chǎng)調(diào)查得知,當(dāng)種植櫻桃的面積x不超過(guò)15畝時(shí),每畝可獲得利潤(rùn)y=1900元;超過(guò)15畝時(shí),每畝獲得利潤(rùn)y(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過(guò)的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)
x(畝) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)請(qǐng)求出種植櫻桃的面積超過(guò)15畝時(shí)每畝獲得利潤(rùn)y與x的函數(shù)關(guān)系式;
(2)如果小王家計(jì)劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過(guò)50畝,設(shè)小王家種植x畝櫻桃所獲得的總利潤(rùn)為W元,求小王家承包多少畝荒山獲得的總利潤(rùn)最大,并求總利潤(rùn)W(元)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中, ,邊的長(zhǎng)為邊的長(zhǎng)為,在此三角形內(nèi)有一個(gè)矩形;點(diǎn)分別在上,設(shè)的長(zhǎng)為,矩形的面積為(單位: )
(1)當(dāng)等于30時(shí),求與的函數(shù)關(guān)系式:(不要求寫出自變量的取值范圍)
(2)在(1)的條件下,矩形的面積能否為?請(qǐng)說(shuō)明理由?
(3)若與的函數(shù)圖象如圖2所示,求此時(shí)的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB,
(1)求證:直線AB是⊙O的切線;
(2)OA,OB分別交⊙O于點(diǎn)D,E,AO的延長(zhǎng)線交⊙O于點(diǎn)F,若AB=4AD,求sin∠CFE的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com