【題目】如圖,在邊長(zhǎng)為3正方形ABCD的外部作Rt△AEF,且AE=AF=1,連接DE,BF,BD,則DE2+BF2=_____.
【答案】20
【解析】
連接BE,DF交于點(diǎn)O,由題意可證△AEB≌△AFD,可得∠AFD=∠AEB,可證∠EOF=90°,由勾股定理可求解.
連接BE,DF交于點(diǎn)O,
∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∵△AEF是等腰直角三角形,
∴AE=AF,∠EAF=90°,
∴∠EAB=∠DAF,
在△AEB和△AFD中,
∴△AEB≌△AFD(SAS),
∴∠AFD=∠AEB,
∵∠AEF+∠AFE=90°=∠AEB+∠BEF+∠AFE=∠BEF+∠AFE+∠AFD=∠BEF+∠EFD=90°,
∴∠EOF=90°,
∴EO2+FO2=EF2,DO2+BO2=DB2,EO2+DO2=DE2,OF2+BO2=BF2,
∴DE2+BF2=EF2+DB2=2AE2+2AD2=20,
故答案為:20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F為對(duì)角線BD上的兩點(diǎn),且∠DAE=∠BCF.
求證:(1)AE=CF;
(2)四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線y=ax2﹣3ax+c(a≠0)與y軸交于點(diǎn)C(0,﹣4)與x軸交于點(diǎn)A.B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式.
(2)點(diǎn)D是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)D作DE∥AC,交BC于點(diǎn)E,連接CD.當(dāng)△CDE的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)Q(2,0).問(wèn):是否存在這樣的直線l,使得△OQF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)M放在正方形ABCD的對(duì)角線AC(不與點(diǎn)A重合)上滑動(dòng),連結(jié)DM,做MN⊥DM,交直線AB于N.
(1)求證:DM=MN;
(2)若將(1)中的正方形變?yōu)榫匦危溆鄺l件不變?nèi)鐖D,且DC=2AD,求MD:MN的值;
(3)在(2)中,若CD=nAD,當(dāng)M滑動(dòng)到CA的延長(zhǎng)線上時(shí)(如圖3),請(qǐng)你直接寫出MD:MN的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,∠BAC 的平分線交 BC 于點(diǎn) O,以 O 為圓心作圓,⊙O 與 AC 相切于點(diǎn) D.
(1)試判斷 AB 與⊙O 的位置關(guān)系,并加以證明;
(2)在 Rt△ABC 中,若 AC=6,AB=3,求切線 AD 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)N(0,4),動(dòng)點(diǎn)M從A點(diǎn)以每秒1個(gè)單位的速度勻速沿x軸向左移動(dòng).
(1)點(diǎn)A的坐標(biāo):_____;點(diǎn)B的坐標(biāo):_____;
(2)求△NOM的面積S與M的移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;
(3)在y軸右邊,當(dāng)t為何值時(shí),△NOM≌△AOB,求出此時(shí)點(diǎn)M的坐標(biāo);
(4)在(3)的條件下,若點(diǎn)G是線段ON上一點(diǎn),連結(jié)MG,△MGN沿MG折疊,點(diǎn)N恰好落在x軸上的點(diǎn)H處,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在復(fù)習(xí)數(shù)學(xué)知識(shí)時(shí),針對(duì)“求一元二次方程的解”,整理了以下的幾種方法,請(qǐng)你將有關(guān)內(nèi)容補(bǔ)充完整.例題:求一元二次方程的兩個(gè)解.
(1)解法一:選擇合適的一種方法(公式法、配方法、分解因式法)求解.解方程:;
(2)解法二:利用二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)求解,如圖1所示,把方程的解看成是二次函數(shù)y= 的圖象與x軸交點(diǎn)的橫坐標(biāo),即x1,x2就是方程的解.
(3)解法三:利用兩個(gè)函數(shù)圖象的交點(diǎn)求解.
①把方程的解看成是一個(gè)二次函數(shù)y= 的圖象與一個(gè)一次函數(shù)y= 的圖象交點(diǎn)的橫坐標(biāo);
②畫出這兩個(gè)函數(shù)的圖象,用x1,x2在x軸上標(biāo)出方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達(dá)圖書館恰好用了35分鐘.兩人之間的距離y(m)與小雪離開出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時(shí),小雪離圖書館的距離為____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,∠ADB=∠CDB=∠BAC=45°,結(jié)論:①∠ABC=90°,②AB=BC,③AD2+DC2=2AB2,④AD+DC=BD,其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com