【題目】某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18的條件下生長最快的新品種.如圖,是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時間x(小時)變化的函數(shù)圖象,其中BC段足雙曲線 的一部分,請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)這天保持大棚內(nèi)溫度18的時間有多少小時?
(2)求k值;
(3)當x=15時,大棚內(nèi)的溫度約為多少度?
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1) 令P0(2,-3),O為坐標原點,則d(O,P0)= ;
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(3)設(shè)P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離. 若P(a,-3)到直線y=x+1的直角距離為6,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)民在自己家承包的甲、乙兩片荒山上各栽了200棵蘋果樹,成活率均為96%,現(xiàn)已掛果.他隨意從甲山采摘了4棵樹上的蘋果,稱得質(zhì)量(單位:千克)分別為36,40,48,36;從乙山采摘了4棵樹上的蘋果,稱得質(zhì)量(單位:千克)分別為50,36,40,34,將這兩組數(shù)據(jù)組成一個樣本,回答下列問題:
(1)樣本容量是多少?
(2)樣本平均數(shù)是多少?并估算出甲、乙兩山蘋果的總產(chǎn)量;
(3)甲、乙兩山哪個山上的蘋果長勢較整齊?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中AC平分∠BAD,∠ADC=∠ACB=90,E為AB的中點,AC與DE交于點F.
(1)求證: =AB·AD;
(2)求證:CE//AD;
(3)若AD=6, AB=8.求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-1,5),B(-1,0),C(-4,3).
(1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(2)寫出點A1、B1、C1的坐標;
(3)在y軸上畫出點P,使PA+PC最;
(4)求六邊形AA1C1B1BC的面積..
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將豎直放置的長方形磚塊ABCD推倒至長方形A'B'C'D'的位置,長方形ABCD的長和寬分別為a,b,AC的長為c.
(1)你能用只含a,b的代數(shù)式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA嗎?能用只含c的代數(shù)式表示S△ACA'嗎?
(2)利用(1)的結(jié)論,你能驗證勾股定理嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4,拋物線頂點處到邊MN的距離是4,要在鐵皮上截下一矩形ABCD,使矩形頂點B、C落在邊MN上,A、D落在拋物線上.
(1)如圖建立適當?shù)淖鴺讼,求拋物線解析式;
(2)設(shè)矩形ABCD的周長為L,點C的坐標為(m,0),求L與m的關(guān)系式(不要求寫自變量取值范圍).
(3)問這樣截下去的矩形鐵皮的周長能否等于9.5,若不等于9.5,請說明理由,若等于9.5,求出嗎的值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1 cm/s,當點P到達點B時,P、Q兩點停止運動,設(shè)點P的運動時間為t(s),則(1)BP cm,BQ cm.(用含t的代數(shù)式表示)
(2)當t為何值時,△PBQ是直角三角形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com