【題目】如圖,扇形ABC的圓心角為90°,半徑為6,將扇形ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)得到扇形ADE,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、E,若點(diǎn)D剛好落在上,則陰影部分的面積為_____.
【答案】3π+9.
【解析】
直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合扇形面積求法以及等邊三角形的判定與性質(zhì)得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進(jìn)而得出答案.
解:連接BD,過(guò)點(diǎn)B作BN⊥AD于點(diǎn)N,
∵將半徑為4,圓心角為90°的扇形BAC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,
∴∠BAD=60°,AB=AD,
∴△ABD是等邊三角形,
∴∠ABD=60°,
則∠ABN=30°,
故AN=3,BN=3,
S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD
=﹣(﹣×6×3)
=3π+9.
故答案為3π+9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時(shí)說(shuō):“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場(chǎng)所,出門(mén)戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運(yùn)動(dòng),少熬夜.”某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,通過(guò)微信群宣傳新型冠狀病毒 肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線參與作答《2020 年新型冠狀病毒防治全國(guó)統(tǒng)一考試 (全國(guó)卷)》試卷(滿分 100 分),社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取 20 名人員的 答卷成績(jī),并對(duì)他們的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過(guò)程如下:
收集數(shù)據(jù)
甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理數(shù)據(jù)
60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 | |
甲小區(qū) | 2 | 5 | 8 | 5 |
乙小區(qū) | 3 | 7 | 5 | 5 |
分析數(shù)據(jù)
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲小區(qū) | 85.75 | 87.5 | a |
乙小區(qū) | 83.5 | b | 80 |
應(yīng)用數(shù)據(jù)
(1)填空:a = ,b =___,
(2)若甲小區(qū)共有 800 人參與答卷,請(qǐng)估計(jì)甲小區(qū)成績(jī)大于 90 分的人數(shù)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】名聞遐邇的采花毛尖明前茶,成本每廳400元,某茶場(chǎng)今年春天試營(yíng)銷(xiāo),每周的銷(xiāo)售量y(斤)是銷(xiāo)售單價(jià)x(元/斤)的一次函數(shù),且滿足如下關(guān)系:
x(元/斤) | 450 | 500 | 600 |
y(斤) | 350 | 300 | 200 |
(1)請(qǐng)根據(jù)表中的數(shù)據(jù)求出y與x之間的函數(shù)關(guān)系式;
(2)若銷(xiāo)售每斤茶葉獲利不能超過(guò)40%,該茶場(chǎng)每周獲利不少于30000元,試確定銷(xiāo)售單價(jià)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)對(duì)即將參加中考的5000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
(1)本次調(diào)查的樣本為 ,樣本容量為 ;
(2)在頻數(shù)分布表中,a= ,b= ,并將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校1000名學(xué)生一周在校參加體育鍛煉的時(shí)間,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生,對(duì)他們一周在校參加體育鍛煉的時(shí)間進(jìn)行了調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的值為 ;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)該校一周在校參加體育鍛煉的時(shí)間大于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小芳身高1.6米,此時(shí)太陽(yáng)光線與地面的夾角為45°.
(1)若小芳正站在水平地面A處上時(shí),那么她的影長(zhǎng)為多少米?
(2)若小芳來(lái)到一個(gè)坡度i=的坡面底端B處,當(dāng)她在坡面上至少前進(jìn)多少米時(shí),小芳的影子恰好都落在坡面上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題:如何使用尺規(guī)完成“過(guò)直線l外一點(diǎn)P作已知直線l的平行線”.
小明的作法如下:
①在直線l上取一點(diǎn)A,以點(diǎn)A為圓心,AP長(zhǎng)為半徑作弧,交直線l于點(diǎn)B;
②分別以P,B為圓心,以AP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q(與點(diǎn)A不重合);
③作直線PQ.所以直線PQ就是所求作的直線.根據(jù)小明的作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵AB=AP= = .
∴四邊形ABQP是菱形( )(填推理的依據(jù)).
∴PQ∥l.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線與軸交于點(diǎn).
(1)試確定該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)是該拋物線的頂點(diǎn),求的面積;
(3)若點(diǎn)是線段上的一動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類(lèi)比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com