【題目】列方程組解應(yīng)用題

5月份,甲、乙兩個(gè)工廠用水量共為200噸.進(jìn)入夏季用水高峰期后,兩工廠積極響應(yīng)國(guó)家號(hào)召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個(gè)工廠6月份用水量共為174噸,求兩個(gè)工廠5月份的用水量各是多少?

【答案】甲工廠5月份用水量為120噸, 乙工廠5月份用水量為80噸.

【解析】

設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)兩廠5月份的用水量及6月份的用水量,即可得出關(guān)于x、y的二元一次方程組,此題得解.

解:設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,

根據(jù)題意得:,

解得: ,

∴甲工廠5月份用水量為120, 乙工廠5月份用水量為80噸.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推進(jìn)中原經(jīng)濟(jì)區(qū)建設(shè),促進(jìn)中部地區(qū)崛起,我省汽車(chē)領(lǐng)頭企業(yè)鄭州日產(chǎn)實(shí)行技術(shù)革新,在保證原有生產(chǎn)線的同時(shí),引進(jìn)新的生產(chǎn)線,今年某月公司接到裝配汽車(chē)2400輛的訂單,定價(jià)為每輛6萬(wàn)元,若只采用新的生產(chǎn)線生產(chǎn),則與原生產(chǎn)線相比可以提前8天完成訂單任務(wù),已知新的生產(chǎn)線使汽車(chē)裝配效率比以前提高了

1)求原生產(chǎn)線每天可以裝配多少輛汽車(chē)?

2)已知原生產(chǎn)線裝配一輛汽車(chē)需要成本5萬(wàn)元,新生產(chǎn)線比原生產(chǎn)線每輛節(jié)省1萬(wàn)元,于是公司決定兩條生產(chǎn)線同時(shí)生產(chǎn),且新生產(chǎn)線裝配的數(shù)量最多是原生產(chǎn)線裝配數(shù)量的2倍,問(wèn):如何分配兩條生產(chǎn)線才能使獲得的利潤(rùn)最大,最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問(wèn)題

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,寫(xiě)出BC的坐標(biāo);

(3)計(jì)算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線AB與直線CD的位置關(guān)系,并說(shuō)明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上一點(diǎn),且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問(wèn)∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠A=1,∠2+3=180°,∠BDE=65°,

1ABDF平行嗎?說(shuō)明理由;

2)求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,點(diǎn)A(a,b)滿(mǎn)足+|b-2|=0,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C.

(1)則a=____,b=____;點(diǎn)C坐標(biāo)為________;

(2)如下圖所示:點(diǎn)D(m, n)在線段BC上,求m、n滿(mǎn)足的關(guān)系式;

(3)如下圖所示:E是線段OB上一動(dòng)點(diǎn),以O(shè)B為邊作∠G=∠AOB,,交BC于點(diǎn)G,連CE交OG于點(diǎn)F,的當(dāng)點(diǎn)E在線段OB上運(yùn)動(dòng)過(guò)程中, 的值是否會(huì)發(fā)生變化?若變化請(qǐng)說(shuō)明理由,若不變,請(qǐng)求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)學(xué)生的身體健康,某中學(xué)課桌椅的高度都是按一定的關(guān)系配套設(shè)計(jì)的,下表列出5套符合條件的課桌椅的高度.

椅子高度xcm

45

42

39

36

33

桌子高度ycm

84

79

74

69

64

1)假設(shè)課桌的高度為ycm,椅子的高度為xcm,請(qǐng)確定yx的函數(shù)關(guān)系式;

2)現(xiàn)有一把高38cm的椅子和一張高73.5cm的課桌,它們是否配套?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)yax+b的圖象與反比例函數(shù)y圖象相交于點(diǎn)A(﹣1,2)與點(diǎn)B(﹣4n).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求△AOB的面積.

3)在第二象限內(nèi),求不等式ax+b的解集(請(qǐng)直接寫(xiě)出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2,∠C=∠D,那么DFAC,請(qǐng)完成它成立的理由

∵∠1=∠2,∠2=∠3 ,∠1=∠4(

∴∠3=∠4(

∴________∥_______ (

∴∠C=∠ABD

∵∠C=∠D

∴∠D=∠ABD

DFAC

查看答案和解析>>

同步練習(xí)冊(cè)答案