【題目】如圖所示,在 10×6 的正方形網(wǎng)格中,每個小正方形的邊長均為 1,線段 AB 的端點 A、B 均在小正方形的頂點上.
(1)在圖中畫出以 AB 為一腰的等腰△ABC,點 C 在小正方形頂點上,△ABC 為鈍角三角形,且△ABC 的面積為;
(2)在圖中畫出以 AB 為斜邊的直角三角形 ABD, 點 D在小正方形的頂點上,且 AD>BD;
(3)連接 CD,請你直接寫出線段 CD 的長.
【答案】(1)如圖所示見解析;(2)如圖所示見解析;(3).
【解析】
(1)根據(jù)AB的長和三角形的面積即可求出點C所在的直線,然后根據(jù)AB=BC即可找出點C;
(2)以AB為直徑作圓,從圓與小正方形的頂點的交點中找出滿足AD>BD的點D即可;
(3)根據(jù)勾股定理計算即可.
解:(1)由圖可知:AB=5,
∵△ABC 的面積為
∴C到AB的距離為×2÷5=3
∴點C在與AB平行且相距3的直線上,以點B為圓心,AB的長為半徑作弧,交該直線與點C,連接AC、BC,如圖所示△ABC即為所求;
(2)以AB為直徑作圓,從圓與小正方形的頂點的交點中找出滿足AD>BD的點D即可,如圖所示,△ABD即為所求;
(3)根據(jù)勾股定理.
科目:初中數(shù)學 來源: 題型:
【題目】在中,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以1.25cm/s的速度沿BC向終點C移動.過點P作PE∥BC交AD于點E,連結(jié)EQ.設動點運動時間為x秒.
(1)用含x的代數(shù)式表示AE、DE的長度;
(2)當點Q在BD(不包括點B、D)上移動時,設的面積為,求與月份的函數(shù)關系式,并寫出自變量的取值范圍;
(3)當為何值時,為直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年4月22日是第50個世界地球日,某校在八年級5個班中,每班各選拔10名學生參加“環(huán)保知識競賽”并評出了一、二、三等獎各若干名,學校將獲獎情況繪成如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)求本次競賽獲獎的總?cè)藬?shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“二等獎”所對應扇形的圓心角度數(shù);
(3)如果該校八年級有800人,請你估計獲獎的同學共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲地有42噸貨物要運到乙地,有大、小兩種貨車可供選擇,具體收費情況如表:
類型 | 載重量(噸) | 運費(元/車) |
大貨車 | 8 | 450 |
小貨車 | 5 | 300 |
運完這批貨物最少要支付運費_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,點M在△ABC內(nèi),AM平分∠BAC.點E與點M在AC所在直線的兩側(cè),AE⊥AB,AE=BC,點N在AC邊上,CN=AM,連接ME,BN.
(1)補全圖形;
(2)求ME:BN的值;
(3)問:點M在何處時BM+BN取得最小值?確定此時點M的位置,并求此時BM+BN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,拋物線 y=ax2 -2ax+4(a<0) 交 x 軸于點 A、B,與 y 軸交于點 C,AB=6.
(1)如圖 1,求拋物線的解析式;
(2) 如圖 2,點 R 為第一象限的拋物線上一點,分別連接 RB、RC,設△RBC 的面積為 s,點 R 的橫坐標為 t,求 s 與 t 的函數(shù)關系式;
(3)在(2)的條件下,如圖 3,點 D 在 x 軸的負半軸上,點 F 在 y 軸的正半軸上,點 E 為 OB 上一點,點 P 為第一象限內(nèi)一點,連接 PD、EF,PD 交 OC 于點 G,DG=EF,PD⊥EF,連接 PE,∠PEF=2∠PDE,連接 PB、PC,過點R 作 RT⊥OB 于點 T,交 PC 于點 S,若點 P 在 BT 的垂直平分線上,OB-TS=,求點 R 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊長5米寬4米的地毯,為了美觀設計了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個地毯面積的.
(1)求配色條紋的寬度;
(2)如果地毯配色條紋部分每平方米造價200元,其余部分每平方米造價100元,求地毯的總造價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,O)、C(3,0),點B為拋物線頂點,直線BD為拋物線的對稱軸,點D在x軸上,連接AB、BC.
⑴如圖1,若∠ABC=60°,則點B的坐標為______________;
⑵如圖2,若∠ABC=90°,AB與y軸交于點E,連接CE.
①求這條拋物線的解析式;
②點P為第一象限拋物線上一個動點,設△PEC的面積為S,點P的橫坐標為m,求S關于m的函數(shù)關系武,并求出S的最大值;
③如圖3,連接OB,拋物線上是否存在點Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請直接寫出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知:點 ,點 ,點 ,在 內(nèi)依次作等邊三角形,使一邊在 軸上,另一個頂點在 邊上,作出的等邊三角形分別是第 個 ,第 個 ,第 個 , ,則第 個等邊三角形的邊長等于 ________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com