【題目】ABC中,ABBC,直線l垂直平分AC.

1)如圖1,作∠ABC的平分線交直線l于點(diǎn)D,連接AD,CD.

①補(bǔ)全圖形;

②判斷∠BAD和∠BCD的數(shù)量關(guān)系,并證明.

2)如圖2,直線l與△ABC的外角∠ABE的平分線交于點(diǎn)D,連接ADCD.求證:∠BAD=BCD.

【答案】1)①見解析;②∠BAD+∠BCD=180°,證明見解析;(2)見解析.

【解析】

1)①根據(jù)題意畫圖即可補(bǔ)全圖形;

②過點(diǎn)DDEAB于點(diǎn)E、DFBCBC的延長線于點(diǎn)F,如圖4,根據(jù)角平分線的性質(zhì)和線段垂直平分線的性質(zhì)可得DE=DFDA=DC,再根據(jù)HL可證RtADERtCDF,進(jìn)而可得∠BAD=DCF,進(jìn)一步即可得出∠BAD和∠BCD的數(shù)量關(guān)系;

2)過點(diǎn)DDHAB于點(diǎn)HDGCE于點(diǎn)G,如圖5,根據(jù)角平分線的性質(zhì)和線段垂直平分線的性質(zhì)可得DG=DH,DA=DC,再根據(jù)HL可證RtADHRtCDG,進(jìn)一步即可得出結(jié)論.

解:(1)①補(bǔ)全圖形如圖3;

②∠BAD+BCD=180°.

證明:過點(diǎn)DDEAB于點(diǎn)E、DFBCBC的延長線于點(diǎn)F,如圖4,

BD平分∠ABC,∴DE=DF,

∵直線l垂直平分AC,∴DA=DC,

RtADERtCDFHL),∴∠BAD=DCF,

∵∠DCF+BCD=180°,

∴∠BAD+BCD=180°

3)證明:過點(diǎn)DDHAB于點(diǎn)H,DGCE于點(diǎn)G,如圖5

BD平分∠ABE,∴DH=DG,

∵直線l垂直平分AC,∴DA=DC,

RtADHRtCDGHL),

∴∠BAD=BCD,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中有一格點(diǎn)三角形,該三角形的三個(gè)頂點(diǎn)為:A(1,1),B(﹣3,1),C(﹣3,﹣1).

(1)若△ABC的外接圓的圓心為P,則點(diǎn)P的坐標(biāo)為_____,P的半徑為_____;

(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點(diǎn)O點(diǎn)為位似中心,將△ABC按相似比2:1放大,A、B、C的對(duì)應(yīng)點(diǎn)分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個(gè)單位長度,能使得B'C'所在的直線與⊙P相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點(diǎn)分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題背景)

如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)軸上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)軸上移動(dòng)時(shí),始終保持是等腰直角三角形,且(點(diǎn)、、按逆時(shí)針方向排列);當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),得到等腰直角三角形(此時(shí)點(diǎn)與點(diǎn)重合).

(初步探究)

(1)寫出點(diǎn)的坐標(biāo)______.

(2)點(diǎn)軸上移動(dòng)過程中,當(dāng)?shù)妊苯侨切?/span>的頂點(diǎn)在第四象限時(shí),連接.

求證:;

(深入探究)

(3)當(dāng)點(diǎn)軸上移動(dòng)時(shí),點(diǎn)也隨之運(yùn)動(dòng).經(jīng)過探究發(fā)現(xiàn),點(diǎn)的橫坐標(biāo)總保持不變,請(qǐng)直接寫出點(diǎn)的橫坐標(biāo):______.

(拓展延伸)

(4)點(diǎn)軸上移動(dòng)過程中,當(dāng)為等腰三角形時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(k﹣1)x2﹣2kx+k+2=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求k的取值范圍;

(2)若x1,x2是一元二次方程的兩個(gè)實(shí)數(shù)根,且滿足=﹣2,求k的值,并求此時(shí)方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AD平分∠BACBCD,∠MDN的兩邊分別與ABAC相交于M,N兩點(diǎn),且DM=DN.

1)如圖甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,NDAB.

①寫出∠MDA= °,AB的長是 .

②求四邊形AMDN的周長;

2)如圖乙,過DDFACF,先補(bǔ)全圖乙再證明AM+AN=2AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC 中,點(diǎn) D 是線段 BC 上一點(diǎn).作射線 AD ,點(diǎn) B 關(guān)于射線 AD 的對(duì)稱點(diǎn)為 E .連接 EC 并延長,交射線 AD 于點(diǎn) F .

1)補(bǔ)全圖形;(2)求AFE 的度數(shù);(3)用等式表示線段 AF 、CF 、 EF 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn),我們把兩點(diǎn)間的平面距離,記作

)已知為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)是坐標(biāo)軸上的點(diǎn),滿足,請(qǐng)寫出點(diǎn)的坐標(biāo).答:__________

)設(shè)是平面上一點(diǎn),是直線上的動(dòng)點(diǎn),我們定義的最小值叫做到直線平面距離.試求點(diǎn)到直線平面距離”.

)在上面的定義基礎(chǔ)上,我們可以定義平面上一條直線與⊙直角距離:在直線與⊙上各自任取一點(diǎn),此兩點(diǎn)之間的平面距離的最小值稱為直線與⊙平面距離,記作

試求直線與圓心在直線坐標(biāo)系原點(diǎn)、半徑是的⊙的直角距離__________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶次,每次射靶的成績(jī)?nèi)缦拢?/span>

甲:,,,,,,,

乙:,,,,,,

丙:,,,,,,

1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

__________

__________

__________

2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定.并簡(jiǎn)要說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案