【題目】小明是個愛探究的學(xué)生,在學(xué)習(xí)完等腰三角形的判定定理之后,對于等腰(如圖甲),若,,小明發(fā)現(xiàn),只要作的平分線就可以將分成兩個等腰三角形.

(1)你認(rèn)為小明的發(fā)現(xiàn)正確嗎?若正確,請給出證明過程;若不正確,請說明理由;

(2)請你對圖乙的三角形進(jìn)行探索,將分成兩個等腰三角形,并寫出頂角度數(shù);

(3)請你對圖丙的三角形進(jìn)行再探索,將分成三個等腰三角形,并寫出頂角度數(shù).

【答案】(1)見解析;(2)130°,80°;(3)108°,144°,108°.

【解析】試題分析:(1)先根據(jù)等邊對等角和三角形內(nèi)角和定理求出∠ABCC72°,然后根據(jù)角平分線定義求出∠1236°,在BDC中根據(jù)內(nèi)角和定理求出∠BDC72°,再根據(jù)等角對等邊即可得出結(jié)論;

2先根據(jù)三角形內(nèi)角和定理求出∠EGF105°,然后在∠EGF內(nèi)作∠MGF25°,則∠GME50°,根據(jù)等角對等邊可得EGMFMG都是等腰三角形,根據(jù)三角形內(nèi)角和定理可求得兩個三角形頂角的度數(shù);

3作∠NPM的平分線,則分成的兩個角都等于36°,過N、M作射線,將∠PNM和∠PMN都分成36°18°的兩個角,三條射線相交于點O,則可證明ONP、ONMOMN都為等腰三角形.

試題解析:

(1)正確.

如圖:

在△ABC中,∵ABAC,∴∠ABC=∠C,

∵∠A=36°,

∴∠ABC=∠C=72°,

BD平分∠ABC,∴∠1=∠2=36°,

∴∠3=∠1+∠A=72°,

∴∠1=∠A,∠3=∠C,

ADBD,BDBC,

∴△ABDBDC都是等腰三角形;

2如圖乙,等腰MGF等腰GEM的頂角度數(shù)分別為130°,80°

3)如圖丙,等腰OPN,等腰ONM,等腰OMP的頂角度數(shù)分別為108°,144°,108°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CBDC(或它們的延長線)于點M,N.當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN(如圖1),易證BM+DN=MN

(1)當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN(如圖2),線段BMDNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

(2)當(dāng)∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM,DNMN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知, 互余, 平分

1在圖1,______ ______

2在圖1,設(shè), 請?zhí)骄?/span>之間的數(shù)量關(guān)系必須寫出推理的主要過程,但每一步后面不必寫出理由);

3在已知條件不變的前提下,當(dāng)繞著點O順時針轉(zhuǎn)動到如圖2的位置,此時之間的數(shù)量關(guān)系是否還成立?若成立,請說明理由若不成立,直接寫出此時之間的數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….

若字母 表示自然數(shù),請把你觀察到的規(guī)律用含有 的式子表示出來________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明、小強從同一地點A同時反向(小明按逆時針方向,小強按順時針方向)繞環(huán)形跑道跑步,小明的速度為4a /秒,小強的速度為5a /(a>0),經(jīng)過t秒兩人第一次相遇.

這條環(huán)形跑道的周長為多少米?

兩人第一次相遇后,小明、小強繼續(xù)按原方向繞跑道跑步. 小明又經(jīng)過幾秒再次到達(dá)A點?

在①中當(dāng)小明到達(dá)A點時,小強是否已經(jīng)過A點?如果已經(jīng)過,則小強經(jīng)過A點后又走了多少米?如果沒有經(jīng)過,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中卷第九勾股,主要講述了以測量問題為中心的直角三角形三邊互求的關(guān)系.其中記載:“今有邑,東西七里,南北九里,各中開門,出東門一十五里有木,問:出南門幾何步而見木?”
譯文:“今有一座長方形小城,東西向城墻長7里,南北向城墻長9里,各城墻正中均開一城門.走出東門15里處有棵大樹,問走出南門多少步恰好能望見這棵樹?”(注:1里=300步)
你的計算結(jié)果是:出南門 步而見木.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形中,點為它們的直角頂點,當(dāng)有重疊部分時:

(1)①連接,如圖1,求證: ;

②連接,如圖2,求證: ;

(2)當(dāng)無重疊部分時:連接,如圖3,當(dāng) 時,計算四邊形面積的最大值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)y=+x的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=+x的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過程,請補充完整:
(1)函數(shù)y=+x的自變量x的取值范圍是;
(2)下表是y與x的幾組對應(yīng)值.

求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標(biāo)是(2,3),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過點A(1,0),且當(dāng)x=0和x=5時所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達(dá)式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案