【題目】如圖,AB為⊙O的直徑,弦CDAB,垂足為點P,直線BFAD延長線交于點F,且∠AFB=∠ABC

1)求證:直線BF是⊙O的切線;

2)若CD2,BP1,求⊙O的半徑.

【答案】(1)見解析;(2)3

【解析】

1)由圓周角定理得出∠ABC=ADC,由已知得出∠ADC=AFB,證出CDBF,得出ABBF,即可得出結(jié)論;

2)設⊙O的半徑為r,連接OD.由垂徑定理得出PDPCCD,得出OP=r-1RtOPD中,由勾股定理得出方程,解方程即可.

:1)證明:AC=弧AC,

∴∠ABC∠ADC

∵∠AFB∠ABC,

∴∠ADC∠AFB

∴CD∥BF,

∵CD⊥AB,

∴AB⊥BF,

∵AB是圓的直徑,

直線BF⊙O的切線;

2)解:設⊙O的半徑為r,連接OD.如圖所示:

∵AB⊥BF,CD2,

∴PDPCCD

∵BP1,

∴OPr1

Rt△OPD中,由勾股定理得:r2 =(r12+2

解得:r3

⊙O的半徑為3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學圍繞哈爾濱市周邊五大名山,:香爐山、鳳凰山、金龍山、帽兒山、二龍山,你最喜歡那一座山?(每名學生必選且只選一座山)的問題在全校范圍內(nèi)隨機抽取了部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖的不完整的統(tǒng)計圖:

(1)求本次調(diào)查的樣本容量;

(2)求本次調(diào)查中,最喜歡鳳凰山的學生人數(shù),并補全條形統(tǒng)計圖;

(3)若該中學共有學生1200,請你估計該中學最喜歡香爐山的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,BAC的平分線交外接圓于D,DEABEDMACM

(1)求證:BECM

(2)求證:ABAC=2BE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax+bx+cx,y的對應值如下表:

x

-

0

1

2

y

-

m

1

n

下列關(guān)于該函數(shù)性質(zhì)的判斷:①該二次函數(shù)有最大值;②當x0時,函數(shù)yx的增大而減;③不等式y<﹣1的解集是﹣1x2;④關(guān)于x的一元二次方程ax2+bx+c0的兩個實數(shù)根分別位于﹣1xx2之間.其中正確結(jié)論的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點C順時針旋轉(zhuǎn)36°,得到△,點B′在AB邊上,ACE,連接AA′.有下列結(jié)論:①△ABC≌△;②四邊形是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結(jié)論是(

A.①②B. C.②③D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新羅區(qū)某校元旦文藝匯演,需要從3名女生和1名男生中隨機選擇主持人.

1)如果選擇1名主持人,那么男生當選的概率是多少?

2)如果選擇2名主持人,用畫樹狀圖(或列表)求出2名主持人恰好是11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC的斜邊BC=4,∠ABC=30°,以AB、AC為直徑分別作圓.則這兩圓的公共部分面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點D是邊BC的中點,聯(lián)結(jié)AD.過點CCEAD于點E,聯(lián)結(jié)BE

1)求證:BD2DEAD

2)如果∠ABC=∠DCE,求證:BDCEBEDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱(此過程中水溫y()與開機時間x()滿足一次函數(shù)關(guān)系),當加熱到100℃時自動停止加熱,隨后水溫開始下降,此過程中水溫y()與開機時間x()成反比例關(guān)系,當水溫降至20C時,飲水機又自動開始加熱…,重復上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:

1)當0x8時,求水溫y()與開機時間x()的函數(shù)關(guān)系式;

2)求圖中t的值;

3)若小明上午八點將飲水機在通電開機(此時飲水機中原有水的溫度為20℃后即外出散步,預計上午八點半散步回到家中,回到家時,他能喝到飲水機內(nèi)不低于30℃的水嗎?請說明你的理由.

查看答案和解析>>

同步練習冊答案