【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點(diǎn)C順時(shí)針旋轉(zhuǎn)36°,得到△,點(diǎn)B′在AB邊上,交AC于E,連接AA′.有下列結(jié)論:①△ABC≌△;②四邊形是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結(jié)論是( )
A.①②B.① ③C.②③D.① ② ③
【答案】D
【解析】
①根據(jù)旋轉(zhuǎn)的性質(zhì)可知 則△ABC≌△;
②根據(jù)全等的性質(zhì)和三角形內(nèi)角和定理即可得出 ,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行得出 ,再根據(jù)得出,即可證明四邊形是平行四邊形;
③根據(jù)等腰三角形的判定逐一對(duì)圖中所有的三角形進(jìn)行驗(yàn)證即可得出答案.
根據(jù)旋轉(zhuǎn)的性質(zhì)可知
∴△ABC≌△(SSS);故①正確;
四邊形是平行四邊形,故②正確;
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴ 是等腰三角形
∴所有的三角形都是等腰三角形,故③正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)某個(gè)角度后得到△A′B′C,當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在AB邊上時(shí),陰影部分的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸交于點(diǎn),與反比例函數(shù)的圖象交于,兩點(diǎn),的面積為.
(1)求一次函數(shù)的解析式;
(2)求點(diǎn)坐標(biāo)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A(1,4)和B(﹣2,n).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)請(qǐng)根據(jù)圖象直接寫出y1<y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)P,直線BF與AD延長(zhǎng)線交于點(diǎn)F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線;
(2)若CD=2,BP=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,E是AC中點(diǎn).
(1)求證:DE是⊙O的切線;
(2)若AB=10,BC=6,連接CD,OE,交點(diǎn)為F,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA=2,OC=3.
(1)求拋物線的解析式.
(2)若點(diǎn)D(2,2)是拋物線上一點(diǎn),那么在拋物線的對(duì)稱軸上,是否存在一點(diǎn)P,使得△BDP的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
注:二次函數(shù)(≠0)的對(duì)稱軸是直線=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)(﹣3,0),其對(duì)稱軸為直線x=﹣,結(jié)合圖象分析下列結(jié)論:①abc>0;②3a+c>0;③當(dāng)x<0時(shí),y隨x的增大而增大:④若m,n(m<n)為方程a(x+3)(x﹣2)+3=0的兩個(gè)根,則m<﹣3且n>2;⑤<0,其中正確的結(jié)論有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com