【題目】為了解某校七年級(jí)學(xué)生作業(yè)時(shí)間情況,隨機(jī)抽取了該校七年級(jí)部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下的統(tǒng)計(jì)圖.
作業(yè)時(shí)間分組表(單位:小時(shí))
別 | 作業(yè)時(shí)間 | 人數(shù) | 頻率 |
A | 1≤x≤1.5 | 5 | 0.1 |
B | 1.5≤x≤2 | 20 | b |
C | 2≤x≤2.5 | m | n |
D | x≥2.5 | 7 | 0.14 |
小計(jì) | a | 1 |
(1)統(tǒng)計(jì)圖中的a=______;b=______;m=______;n=______.
(2)求出C組的扇形的圓心角度數(shù).
(3)如果該校七年級(jí)學(xué)生共400名,試估計(jì)這400名生作業(yè)時(shí)間在B組和C組的人數(shù)共有多少人?
【答案】(1)50、0.4、18、0.36;(2)C組的扇形的圓心角度數(shù)為129.6°;(3)估計(jì)這400名生作業(yè)時(shí)間在B組和C組的人數(shù)共有304人.
【解析】
(1)根據(jù)總數(shù)、頻率、頻數(shù)之間的關(guān)系即可求解;
(2)根據(jù)C組的扇形的圓心角度數(shù)=360°×C組所占的百分比,即可求解;
(3)根據(jù)這400名學(xué)生作業(yè)時(shí)間在B組和C組的人數(shù)=七年級(jí)總?cè)藬?shù)×B組和C組的百分比之和,即可求解.
(1)a=5÷0.1=50,b=20÷50=0.4,m=50-(5+20+7)=18,n=18÷50=0.36,
故答案為:50、0.4、18、0.36;
(2)C組的扇形的圓心角度數(shù)為:360°×0.36=129.6°;
(3)估計(jì)這400名學(xué)生作業(yè)時(shí)間在B組和C組的人數(shù)共有:400×(0.4+0.36)=304(人).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校九年級(jí)學(xué)生的跳高水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行跳高測(cè)試,并把測(cè)試成績(jī)繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
(1)求a的值,并把頻數(shù)直方圖補(bǔ)充完整;
(2)該年級(jí)共有500名學(xué)生,估計(jì)該年級(jí)學(xué)生跳高成績(jī)?cè)?/span>1.29m(含1.29m)以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元,170元的A,B兩種型號(hào)的電風(fēng)扇,表中是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1800元 |
第二周 | 4臺(tái) | 10臺(tái) | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)
(1)求A,B兩種型號(hào)的電風(fēng)扇的銷售單價(jià).
(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),則A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)大致的圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( 。
A. 函數(shù)有最大值
B. 對(duì)稱軸是直線x=
C. 當(dāng)x<時(shí),y隨x的增大而減小
D. 當(dāng)時(shí)﹣1<x<2時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=,AD=3,點(diǎn)E是邊AD靠近A的三等分點(diǎn),點(diǎn)P是BC延長(zhǎng)線上一點(diǎn),且EP⊥EB,點(diǎn)G是BE上任意一點(diǎn),過G作GH∥BP,交EP于點(diǎn)H.將△EGH繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)α(0<α<90°),得到△EMN(M、N分別是G、H的對(duì)應(yīng)點(diǎn)).
(1)求BP的長(zhǎng);
(2)求的值;
(3)如圖②當(dāng)α=60°時(shí),點(diǎn)M恰好落在GH上,延長(zhǎng)BM交NP于點(diǎn)Q,取EP的中點(diǎn)K,連接QK.若點(diǎn)G在線段EB上運(yùn)動(dòng),問QK是否有最小值?若有最小值,請(qǐng)求出點(diǎn)G運(yùn)動(dòng)到EB的什么位置時(shí),QK有最小值及最小值是多少,若沒有最小值,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有且僅有一組對(duì)角相等的凸四邊形叫做“準(zhǔn)平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準(zhǔn)平行四邊形.
(1)如圖①,是上的四個(gè)點(diǎn),,延長(zhǎng)到,使.求證:四邊形是準(zhǔn)平行四邊形;
(2)如圖②,準(zhǔn)平行四邊形內(nèi)接于,,若的半徑為,求的長(zhǎng);
(3)如圖③,在中,,若四邊形是準(zhǔn)平行四邊形,且,請(qǐng)直接寫出長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,點(diǎn)P由B點(diǎn)出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為2cm/s;點(diǎn)Q由A點(diǎn)出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為cm/s;若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<3),解答下列問題:
(1)如圖①,連接PC,當(dāng)t為何值時(shí)△APC∽△ACB,并說明理由;
(2)如圖②,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)時(shí),是否存在某一時(shí)刻t,使得點(diǎn)P在線段QC的垂直平分線上,請(qǐng)說明理由;
(3)如圖③,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)時(shí),線段BC上是否存在一點(diǎn)G,使得四邊形PQGB為菱形?若存在,試求出BG長(zhǎng);若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了減輕二環(huán)高架上汽車的噪音污染,成都市政府計(jì)劃在高架上的一些路段的護(hù)欄上方增加隔音屏.如圖,工程人員在高架上的車道M處測(cè)得某居民樓頂?shù)难鼋?/span>∠ABC的度數(shù)是20°,儀器BM的高是0.8m,點(diǎn)M到護(hù)欄的距離MD的長(zhǎng)為11m,求需要安裝的隔音屏的頂部到橋面的距離ED的長(zhǎng)(結(jié)果保留到0.1m,參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com