【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根據(jù)這個(gè)規(guī)律,第2014個(gè)點(diǎn)的橫坐標(biāo)為_____________.
【答案】45
【解析】
根據(jù)圖形,以最外邊的矩形邊長上的點(diǎn)為準(zhǔn),點(diǎn)的總個(gè)數(shù)等于x軸上右下角的點(diǎn)的橫坐標(biāo)的平方,
例如:右下角的點(diǎn)的橫坐標(biāo)為1,共有1個(gè),1=12,
右下角的點(diǎn)的橫坐標(biāo)為2時(shí),共有4個(gè),4=22,
右下角的點(diǎn)的橫坐標(biāo)為3時(shí),共有9個(gè),9=32,
右下角的點(diǎn)的橫坐標(biāo)為4時(shí),共有16個(gè),16=42,
…
右下角的點(diǎn)的橫坐標(biāo)為n時(shí),共有n2個(gè),
∵452=2025,45是奇數(shù),
∴第2025個(gè)點(diǎn)是(45,0),
第2014個(gè)點(diǎn)是(45,15),
所以,第2012個(gè)點(diǎn)的橫坐標(biāo)為45.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
已知:如圖,在正方形ABCD中,邊AB=a1.
按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個(gè)比一個(gè)。
操作步驟 | 作法 | 由操作步驟推斷(僅選取部分結(jié)論) |
第一步 | 在第一個(gè)正方形ABCD的對(duì)角線AC上截取AE=a1,再作EF⊥AC于點(diǎn)E,EF與邊BC交于點(diǎn)F,記CE=a2 | (i)△EAF≌△BAF(判定依據(jù)是①); (ii)△CEF是等腰直角三角形; (iii)用含a1的式子表示a2為②: |
第二步 | 以CE為邊構(gòu)造第二個(gè)正方形CEFG; | |
第三步 | 在第二個(gè)正方形的對(duì)角線CF上截取FH=a2,再作IH⊥CF于點(diǎn)H,IH與邊CE交于點(diǎn)I,記CH=a3: | (iv)用只含a1的式子表示a3為③: |
第四步 | 以CH為邊構(gòu)造第三個(gè)正方形CHIJ | |
這個(gè)過程可以不斷進(jìn)行下去.若第n個(gè)正方形的邊長為an,用只含a1的式子表示an為④ |
請(qǐng)解決以下問題:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根據(jù)以上第三步、第四步的作法畫出第三個(gè)正方形CHIJ(不要求尺規(guī)作圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若k為正整數(shù),且方程有兩個(gè)非零的整數(shù)根,求k的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中有不重合的兩個(gè)點(diǎn)Q(x1,y1)與P(x2,y2),若Q、P為某個(gè)直角三角形的兩個(gè)銳角頂點(diǎn),且該直角三角形的直角邊均與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點(diǎn)Q與點(diǎn)P之間的“直距”,記作DPQ,特別地,當(dāng)PQ與某條坐標(biāo)軸平行(或重合)時(shí),線段PQ的長即為點(diǎn)Q與點(diǎn)P之間的“直距”,例如在圖1中,點(diǎn)P(1,1),點(diǎn)Q(3,2),此時(shí)點(diǎn)Q與點(diǎn)P之間的“直距”DPQ=3.
(1)①已知O為坐標(biāo)原點(diǎn),點(diǎn)A(2,-1),B(-2,0),則DAO=________,DBO=________.
②點(diǎn)C在直線y=-x+3上,請(qǐng)你求出DCO的最小值.
(2)點(diǎn)E是以原點(diǎn)O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)F是直線y=2x+4上一動(dòng)點(diǎn),請(qǐng)你直接寫出點(diǎn)E與點(diǎn)F之間“直距”DEF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為開發(fā)大西北,某工程隊(duì)承接高鐵修筑任務(wù),在山坡處需要修建隧道,為了測量隧道的長度,工程隊(duì)用無人機(jī)在距地面高度為500米的C處測得山坡南北兩端A、B的俯角分別為∠DCA=45°、∠DCB=30°(已知A、B、C三點(diǎn)在同一平面上),求隧道兩端A、B的距離.(參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)得到△A'B'C',此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( )
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),現(xiàn)從該校隨機(jī)抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng),并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中提供的信息,解答下列問題:
補(bǔ)全條形統(tǒng)計(jì)圖;
若該校共有學(xué)生2400名,試估計(jì)該校喜愛看電視的學(xué)生人數(shù).
若調(diào)查到喜愛體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E是線段AC上一點(diǎn),BE∥CD,∠BEC=∠BAD.
(1)如圖1已知AB=AD;
①找出圖中與∠DAC相等的角,并給出證明;
②求證:AE=CD;
(2)如圖2,若BC∥ED,,∠BEC=45°,求tan∠ABE的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com