【題目】在四邊形ABCD中,點E是線段AC上一點,BE∥CD,∠BEC=∠BAD.
(1)如圖1已知AB=AD;
①找出圖中與∠DAC相等的角,并給出證明;
②求證:AE=CD;
(2)如圖2,若BC∥ED,,∠BEC=45°,求tan∠ABE的值.
【答案】(1)①∠ABE=∠CAD,理由詳見解析;②詳見解析;(2).
【解析】
(1)①證明△ABE≌△DAF,關(guān)鍵全等三角形的性質(zhì)證明;
②根據(jù)全等三角形的性質(zhì)證明結(jié)論;
(2)過點D作DG⊥CD交AC于點G,證明△ABE∽△DAG,得到==,根據(jù)正切的定義計算,得到答案.
解:(1)①∠ABE=∠CAD,
理由如下:以D為圓心,DC為半徑畫圓,交AC于F,連接DF,
則CD=DF,
∴∠DFC=∠DCF,
∵BE∥CD,
∴∠BEC=∠FCD,
∴∠BEC=∠DFC,
∴∠AEB=∠AFD,
∠BEC=∠BAE+∠ABE,∠BAD=∠BAE+∠DAF,∠BEC=∠BAD,
∴∠ABE=∠DAF,
在△ABE和△DAF中,
,
∴△ABE≌△DAF(AAS),
∴∠ABE=∠CAD,
②∵△ABE≌△DAF,
∴AE=DF,
∵CD=DF,
∴AE=CD;
(3)過點D作DG⊥CD交AC于點G,
∵BE∥CD,
∴∠DCA=∠BEC=45°,
∴∠AEB=∠DGA=135°,DG=DC,
∵∠AEB=∠DGA,∠ABE=∠DAG,
∴△ABE∽△DAG,
∴==,
∵BC∥DE,BE∥CD,
∴四邊形BCDE為平行四邊形,
∴BE=CD,
過點A作AH垂直于BE交BE的延長線于點H,
設(shè)AH=EH=m,
則AE=m,DG=CD=BE=2m,
∴BH=BE+EH=2m+m,
tan∠ABE===.
故答案為:(1)①∠ABE=∠CAD,理由詳見解析;②詳見解析;(2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根據(jù)這個規(guī)律,第2014個點的橫坐標為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.
(1)求證:BD平分∠ABC;
(2)連接EC,若∠A=30°,DC=,求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,點E為CD邊的中點,連接AE并延長與BC的延長線交于點F,過點E作EM⊥AF交BC于點M,連接AM與BD交于點N,現(xiàn)有下列結(jié)論:①AM=MF;②ME2=MCAM;③=(sin∠DAE)2;④點N是四邊形ABME的外接圓的圓心,其中正確結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線與雙曲線相交于點.
求雙曲線的表達式;
過動點且垂直于x軸的直線與直線及雙曲線的交點分別為B和C,當(dāng)點B位于點C下方時,求出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為5的正方形ABCD中,點E,F分別是BC,DC邊上的兩個動點(不與點B,C,D重合),且AE⊥EF.
(1)如圖1,當(dāng)BE=2時,求FC的長;
(2)延長EF交正方形ABCD外角平分線CP于點P.
①依題意將圖2補全;
②小京通過觀察、實驗提出猜想:在點E運動的過程中,始終有AE=PE.小京把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的三種想法:
想法1:在AB上截取AG=EC,連接EG,要證AE=PE,需證△AGE≌△ECP.
想法2:作點A關(guān)于BC的對稱點H,連接BH,CH,EH.要證AE=PE,需證△EHP為等腰三角形.
想法3:將線段BE繞點B順時針旋轉(zhuǎn)90°,得到線段BM,連接CM,EM,要證AE=PE,需證四邊形MCPE為平行四邊形.
請你參考上面的想法,幫助小京證明AE=PE.(一種方法即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是矩形ABCD的邊CD上一點,把△ADE沿AE對折,使點D恰好落在BC邊上的F點處.已知折痕AE=10,且CE:CF=4:3,那么該矩形的周長為( )
A.48B.64C.92D.96
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com