【題目】在△ABC中,∠ACB=90°,AC=BC=4,M為AB的中點(diǎn).D是射線BC上一個(gè)動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接ED,N為ED的中點(diǎn),連接AN,MN.
(1)如圖1,當(dāng)BD=2時(shí),AN等于多少?,NM與AB的位置關(guān)系是?
(2)當(dāng)4<BD<8時(shí),
①依題意補(bǔ)全圖2;
②判斷(1)中NM與AB的位置關(guān)系是否發(fā)生變化,并證明你的結(jié)論;
(3)連接ME,在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,當(dāng)BD的長(zhǎng)為何值時(shí),ME的長(zhǎng)最小?最小值是多少?請(qǐng)直接寫(xiě)出結(jié)果.
【答案】解:(1)∵∠ACB=90°,AC=BC=4,BD=2,
∴CD=2,
∴AD==2,
∵將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,
∴△ADE是等腰直角三角形,
∴DE=AD=2,
∵N為ED的中點(diǎn),
∴AN=DE=,
∵M(jìn)為AB的中點(diǎn),
∴AM=AB=2,
∵,
∴,
∵∠CAB=∠DAN=45°,
∴∠CAD=∠MAN,
∴△ACD∽△AMN,
∴∠AMN=∠C=90°,
∴MN⊥AB,
故答案為:,垂直;
(2)①補(bǔ)全圖形如圖2所示,
②(1)中NM與AB的位置關(guān)系不發(fā)生變化,
理由:∵∠ACB=90°,AC=BC,
∴∠CAB=∠B=45°,
∴∠CAN+∠NAM=45°,
∵線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,
∴AD=AE,∠DAE=90°,
∵N為ED的中點(diǎn),
∴,AN⊥DE,
∴∠CAN+∠DAC=45°,
∴∠NAM=∠DAC,在Rt△AND中,DAN=cos45°=,
同理=,
∴=,
∵∠DAC=45°﹣∠CAN=∠MAN,
∴△ANM∽△ADC,
∴∠AMN=∠ACD,
∵D在BC的延長(zhǎng)線上,
∴∠ACD=180°﹣∠ACB=90°,
∴∠AMN=90°,
∴MN⊥AB;
(3)連接ME,EB,過(guò)M作MG⊥EB于G,過(guò)A作AK⊥AB交BD的延長(zhǎng)線于K,
則△AKB等腰直角三角形,
在△ADK與△ABE中,
,
∴△ADK≌△ABE,
∴∠ABE=∠K=45°,
∴△BMG是等腰直角三角形,
∵BC=4,
∴AB=4,MB=2,
∴MG=2,
∵∠G=90°,
∴ME≥MG,
∴當(dāng)ME=MG時(shí),ME的值最小,
∴ME=BE=2,
∴DK=BE=2,
∵CK=BC=4,
∴CD=2,
∴BD=6,
∴BD的長(zhǎng)為6時(shí),ME的長(zhǎng)最小,最小值是2.
【解析】(1)根據(jù)已知條件得到CD=2,根據(jù)勾股定理得到AD==2 , 根據(jù)旋轉(zhuǎn)的性質(zhì)得到△ADE是等腰直角三角形,求得DE=AD=2 , 根據(jù)直角三角形的性質(zhì)得到AN=DE= , AM=AB=2 , 推出△ACD∽△AMN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(2)①根據(jù)題意補(bǔ)全圖形即可;②根據(jù)等腰直角三角形的性質(zhì)得到∠CAB=∠B=45°,求得∠CAN+∠NAM=45°根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠DAE=90°,推出△ANM△ADC,由相似三角形的性質(zhì)得到∠AMN=∠ACD,即可得到結(jié)論;
(3)連接ME,EB,過(guò)M作MG⊥EB于G,過(guò)A作AK⊥AB交BD的延長(zhǎng)線于K,得到△AKB等腰直角三角形,推出△ADK≌△ABE,根據(jù)全等三角形的性質(zhì)得到∠ABE=∠K=45°,證得△BMG是等腰直角三角形,求出BC=4,AB=4 , MB=2 , 由ME≥MG,于是得到當(dāng)ME=MG時(shí),ME的值最小,根據(jù)等量代換即可得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的等腰直角三角形和勾股定理的概念,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即|x|=|x﹣0|,也就是說(shuō)|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;這個(gè)結(jié)論可以推廣為:|x﹣y|表示在數(shù)軸上數(shù)x、y對(duì)應(yīng)點(diǎn)之間的距離;在解題中,我們常常運(yùn)用絕對(duì)值的幾何意義.
①解方程|x|=2,容易看出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的解為x=±2.
②在方程|x﹣1|=2中,x的值就是數(shù)軸上到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù),顯然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和﹣2的距離之和為5 的點(diǎn)對(duì)應(yīng)的x值,在數(shù)軸上1和﹣2的距離為3,滿足方程的x的對(duì)應(yīng)點(diǎn)在1的右邊或﹣2的左邊.若x的對(duì)應(yīng)點(diǎn)在1的右邊,由圖示可知,x=2;同理,若x的對(duì)應(yīng)點(diǎn)在﹣2的左邊,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根據(jù)上面的閱讀材料,解答下列問(wèn)題:
(1)方程|x|=5的解是_______________.
(2)方程|x﹣2|=3的解是_________________.
(3)畫(huà)出圖示,解方程|x﹣3|+|x+2|=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,點(diǎn)P是與圓心C不重合的點(diǎn),給出如下定義:若點(diǎn)P′為射線CP上一點(diǎn),滿足CPCP′=r2 , 則稱點(diǎn)P′為點(diǎn)P關(guān)于⊙C的反演點(diǎn).右圖為點(diǎn)P及其關(guān)于⊙C的反演點(diǎn)P′的示意圖.
(1)如圖1,當(dāng)⊙O的半徑為1時(shí),分別求出點(diǎn)M(1,0),N(0,2),T( , )關(guān)于⊙O的反演點(diǎn)M′,N′,T′的坐標(biāo);
(2)如圖2,已知點(diǎn)A(1,4),B(3,0),以AB為直徑的⊙G與y軸交于點(diǎn)C,D(點(diǎn)C位于點(diǎn)D下方),E為CD的中點(diǎn).
①若點(diǎn)O,E關(guān)于⊙G的反演點(diǎn)分別為O′,E′,求∠E′O′G的大;
②若點(diǎn)P在⊙G上,且∠BAP=∠OBC,設(shè)直線AP與x軸的交點(diǎn)為Q,點(diǎn)Q關(guān)于⊙G的反演點(diǎn)為Q′,請(qǐng)直接寫(xiě)出線段GQ′的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC
⑴求∠ECD的度數(shù);
⑵若CE=5,求CB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中, ∠BAC=90°, AB=AC=2,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=1,則DE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD為某中學(xué)課外活動(dòng)小組圍建的一個(gè)生物苗圃園,其中兩邊靠墻(墻足夠長(zhǎng)),另外兩邊用長(zhǎng)度為16米的籬笆(虛線部分)圍成.設(shè)AB邊的長(zhǎng)度為x米,矩形ABCD的面積為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式?(不要求寫(xiě)自變量的取值范圍);
(2)求矩形ABCD的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義一種對(duì)正整數(shù)n的“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),F(n)=3n+1;②當(dāng)n為偶數(shù)時(shí),F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n=24,則:
若n=13,則第2018次“F”運(yùn)算的結(jié)果是( 。
A. 1 B. 4 C. 2018 D. 42018
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+b與雙曲線 (x>0)交于A、B兩點(diǎn),與x軸、y軸分別交于E、F兩點(diǎn),連接OA、OB,若S△AOB=S△OBF+S△OAE , 則b= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com