【題目】如圖,AB⊙O的直徑,EF,EB⊙O的弦,且EF=EBEFAB交于點(diǎn)C,連接OF,若∠AOF=40°,則∠F的度數(shù)是(

A.20°B.35°C.40°D.55°

【答案】B

【解析】

連接FB,由鄰補(bǔ)角定義可得∠FOB=140°,由圓周角定理求得∠FEB=70°,根據(jù)等腰三角形的性質(zhì)分別求出∠OFB、∠EFB的度數(shù),繼而根據(jù)∠EFO∠EBF-OFB即可求得答案.

連接FB,

∠FOB=180°-∠AOF=180°-40°=140°

∴∠FEB∠FOB=70°,

∵FOBO

∴∠OFB∠OBF=(180°-FOB)÷2=20°,

∵EFEB,

∴∠EFB∠EBF=(180°-FEB)÷2=55°

∴∠EFO∠EBF-OFB=55°-20°=35°,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)F在正方形ABCDAD邊上,連接BF.把△ABF沿BF折疊,與△GBF重合.連接AG并延長交CD于點(diǎn)E,交BF于點(diǎn)H

1)證明:BF=AE;

2)若AB=15,EC=7,求GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以邊AB為直徑的⊙O交邊BC于點(diǎn)D,交邊AC于點(diǎn)E.過D點(diǎn)作DFAC于點(diǎn)F

1)求證:DF是⊙O的切線;

2)求證:CFEF;

3)延長FD交邊AB的延長線于點(diǎn)G,若EF3,BG9時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視“經(jīng)典詠流傳”開播以來受到社會廣泛關(guān)注,我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:

圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”

1)被調(diào)查的總?cè)藬?shù)是________人,扇形統(tǒng)計(jì)圖中C部分所對應(yīng)的扇形圓心角的度數(shù)為______

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中D類有______人;

4)在抽取的A5人中,剛好有3個女生2個男生,從中隨機(jī)抽取兩個同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣陽光體育“大課間”活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球.B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項(xiàng)目.為了了解學(xué)生對四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:

(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)請計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn).

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出x的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解市民對垃圾分類知識的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進(jìn)行隨機(jī)抽樣的問卷調(diào)查,調(diào)查結(jié)果分為.非常了解.了解、.基本了解、.不太了解四個等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖(1,2),請根據(jù)圖中的信息解答下列問題.

(1)這次調(diào)查的市民人數(shù)為 ,2, ;

(2)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;

(3)在圖2中的扇形統(tǒng)計(jì)圖中,.基本了解所在扇形的圓心角度數(shù);

(4)據(jù)統(tǒng)計(jì),2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計(jì)對垃圾分類知識的知曉程度為.不太了解的市民約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃購進(jìn)甲,乙兩種文具一批,已知一件甲種文具進(jìn)價(jià)與一件乙種文具進(jìn)價(jià)的和為元,用元購進(jìn)甲種文具的件數(shù)與元購進(jìn)乙種文具的件數(shù)相同.

1)求甲乙兩種文具每件進(jìn)價(jià)分別是多少元;

2)恰逢年中大促銷,超市計(jì)劃用不超過元資金購進(jìn)甲乙兩種文具共件,已知賣出一件甲的利潤為元,一件乙的利潤為元.則超市如何進(jìn)貨才能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某茶具店購進(jìn)了A、B兩種不同的茶具,1A種茶具和2B種茶具共需250元;3A種茶具和4B種茶具共需600元.

1)求AB兩種茶具每套的進(jìn)價(jià)分別是多少元?

2)由于茶具暢銷,茶具店準(zhǔn)備再購進(jìn)A、B兩種茶具共80套,但這次進(jìn)貨時,工廠對A種茶具每套進(jìn)價(jià)提高了8%,而B種茶具每套按第一次進(jìn)價(jià)的八折,若茶具店本次進(jìn)貨總錢數(shù)不超過6240元,則最多可進(jìn)A種茶具幾套?

3)若銷售一套A種茶具可獲利30元,銷售一套B種茶其可獲利20元,在(2)的條件下,如何進(jìn)貨可使本次購進(jìn)茶具獲利最多?最多是多少?

查看答案和解析>>

同步練習(xí)冊答案