【題目】如圖,點F在正方形ABCDAD邊上,連接BF.把△ABF沿BF折疊,與△GBF重合.連接AG并延長交CD于點E,交BF于點H

1)證明:BF=AE

2)若AB=15,EC=7,求GE的長.

【答案】1)見解析;(2

【解析】

1)根據(jù)正方形的性質(zhì)和折疊及軸對稱的性質(zhì)證明△ABF≌△DAE,再利用全等三角形的性質(zhì)即可證明結(jié)論;

(2)首先根據(jù)△ABF≌△DAE得出,然后根據(jù)正方形的性質(zhì)和勾股定理求出BF的長度,然后利用的面積求出AH的長度,進而可求AG的長度,最后利用GEAEAG即可求解.

1)證明:∵四邊形ABCD為正方形,

ABAD,∠BAD=∠D90°,

由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,

BFAEAHGH,

∴∠BAH+ABH90°,

又∵∠FAH+BAH90°,

∴∠ABH=∠FAH,

∴△ABF≌△DAE

BFAE;

2)解:∵四邊形ABCD為正方形,

ABCD15

CE7,

DE1578

∵△ABF≌△DAE (已證),

AFDE=8

RtABF中,

BF17,

SABFABAFBFAH,

15×817AH,

AH

AG2AH,

AEBF17

GEAEAG17

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,ECD上一點,動點P從點A出發(fā)沿折線AEECCB運動到點B時停止,動點Q從點A沿AB運動到點B時停止,它們的速度均為每秒1cm.如果點P、Q同時從點A處開始運動,設(shè)運動時間為xs),△APQ的面積為ycm2,已知yx的函數(shù)圖象如圖2所示,以下結(jié)論:AB5cm;cosAED 0x5時,y;x6時,△APQ是等腰三角形;7x11時,y.其中正確的有( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,EB、A在一條直線上.請你幫李明同學計算出信號塔CD的高度(結(jié)果保留整數(shù),≈17≈14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為(1,0),以為直角邊作,并使,再以為直角邊作,并使,再以為直角邊作,并使……按此規(guī)律進行下去,則點的坐標為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新冠疫情爆發(fā)后,各地啟動了抗擊新冠肺炎的一級應(yīng)急響應(yīng)機制,某社區(qū)2090后積極參與社區(qū)志愿者工作,充分展示了新時代青年的責任擔當,這20位志愿者的年齡統(tǒng)計如表,則他們年齡的眾數(shù)和中位數(shù)分別是( 。

A.25歲,25B.25歲,26C.26歲,25D.26歲,26

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊,以邊為直徑的半圓與邊,分別交于點,過點于點,

1)判斷的位置關(guān)系,并證明你的結(jié)論;

2)過點于點,若等邊的邊長為8,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學準備隨機選出七、八、九三個年級各1名學生擔任學校國旗升旗手.現(xiàn)已知這三個年級每個年級分別選送一男、一女共6名學生作為備選人.

1)請你利用樹狀圖或表格列出所有可能的選法;

2)求選出一男兩女三名國旗升旗手的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學對本校初2017500名學生中中考參加體育加試測試情況進行調(diào)查,根據(jù)男生1000米及女生800米測試成績整理,繪制成不完整的統(tǒng)計圖,(圖①,圖②),請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:

(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計圖中a= ;

(2)補全條形統(tǒng)計圖;

(3)若500名學生中隨機抽取一名學生,這名學生該項成績在8分及8分以下的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,EFEB⊙O的弦,且EF=EB,EFAB交于點C,連接OF,若∠AOF=40°,則∠F的度數(shù)是(

A.20°B.35°C.40°D.55°

查看答案和解析>>

同步練習冊答案