【題目】如圖,在菱形ABCD中,AB=5cm,BD=8cm.點P從點B出發(fā),沿BA方向勻速運動,速度為;同時,點Q從點D出發(fā),沿DA方向勻速運動,速度為1cm/s.過點PPNBC分別交BDCD于點M,N,連接QM,QN.設運動時間為.解答下列問題:

1)當為何值時,點在線段的垂直平分線上?

2)設的面積為,求的函數(shù)關系式;

3)在運動過程中,是否存在某一時刻,使的面積為菱形面積的,若存在,求出的值;若不存在,請說明理由;

4)是否存在某一時刻,使為等腰三角形?若存在,請直接寫出的值;若不存在,請說明理由.

【答案】1;(2;(3)存在,當時,的面積為菱形面積的;(4)存在,若時,;若時,;若時,

【解析】

1)連接,證明得到,根據(jù)垂直平分線的性質得出,求出t的值即可;

2)過點,垂足為,交于點,由菱形的性質求出,證明,得,再求出,根據(jù)三角形面積公式即可得出結論;

3)假設存在某一時刻,根據(jù)的面積為菱形面積的列方程求解即可;

4)分,,三種情況分別求解即可

解:(1)連接

若點在線段的垂直平分線上

∴當時,點在線段的垂直平分線上.

2)過點,垂足為,交于點

連接,交于點,根據(jù)題意,

菱形面積:

,

的高等于

∵四邊形是菱形

,

的函數(shù)關系式是

3)假設存在某一時刻,使的面積為菱形面積的

解得,(不合題意,舍去)

答:當時,的面積為菱形面積的

4)若時,

由(2)得

由題意得,,

∴過Q于點G,

中,

;

時,

過N作J,如圖,

,

;

時,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在光明小區(qū)隨機抽取了若干名居民開展主題為打贏藍天保衛(wèi)戰(zhàn)的環(huán)保知識有獎問答活動,并用得到的數(shù)據(jù)繪制了如圖條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6分)

請根據(jù)圖中信息,解答下列問題:

(1)本次調查一共抽取了   名居民;

(2)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)社區(qū)決定對該小區(qū)500名居民開展這項有獎問答活動,得10分者設為一等獎,請你根據(jù)調查結果,幫社區(qū)工作人員估計需準備多少份一等獎獎品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有三條邊相等的四邊形稱為三等邊四邊形.

1)如圖①,平行四邊形中,對角線平分,將線段繞點旋轉一個角度,連接

①求證:四邊形是三等邊四邊形;

②如圖②,連接,.求證:

2)如圖,在(1)的條件下,設交于點,,,求以,為邊的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲地捐贈了600噸物資支援武漢抗擊新冠肺炎,準備安排A、B兩種類型的貨車把這批物資從甲地快速送到武漢,若安排A型貨車5輛、B型貨車6輛,一共需補貼油費3800元;若安排A型貨車3輛、B型貨車2輛,一共需補貼油費1800元.

1)從甲地到武漢,A、B兩種類型貨車每輛各需補貼油費多少元?

2A型貨車每輛可裝15噸物資,B型貨車每輛可裝12噸物資,若安排的B型貨車的數(shù)量是A型貨車的2倍還多4輛,且A型車最多可安排18輛.運送這批物資共有哪些安排,其中補貼的總油費最少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,點是邊上一點,且,點在邊上,過點、、作圓,交邊或其延長線于,連接,,設).

1)求的值;

2)若,求的值;

3)若,求弧的長;

4)若圓經過矩形的兩個頂點時,直接寫出的值.

(注:,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A,B兩點,與y軸交于點C0,﹣2),點A的坐標是(20),P為拋物線上的一個動點,過點PPDx軸于點D,交直線BC于點E,拋物線的對稱軸是直線x=﹣1

1)求拋物線的函數(shù)表達式;

2)若點P在第二象限內,且PEOD,求△PBE的面積.

3)在(2)的條件下,若M為直線BC上一點,在x軸的上方,是否存在點M,使△BDM是以BD為腰的等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B5,0),與y軸交于點C,拋物線的頂點為M(2,-9),連接BM,點P為線段BM上的一個動點.

(1)求二次函數(shù)的解析式.

(2)過點Px軸的垂線,垂足為點Q,求四邊形ACPQ面積的最大值.

(3)是否存在點P,使得以P、MC為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C的中點,連接AC并延長至點D,使CDAC,點EOB上一點,且,CE的延長線交DB的延長線于點F,AF交⊙O于點H,連接BH

1)求證:BD是⊙O的切線;(2)當OB2時,求BH的長.

查看答案和解析>>

同步練習冊答案