【題目】提出問題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,若AE⊥DH于點(diǎn)O,求證:AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由.
【答案】(1)見解析;(2)EF=GH,理由見解析
【解析】
(1)由正方形的性質(zhì)可得AB=DA,∠ABE=90°=∠DAH.又由∠ADO+∠OAD=90°,可證得∠HAO=∠ADO,繼而證得△ABE≌△DAH,可得AE=DH;
(2)將FE平移到AM處,則AM∥EF,AM=EF,將GH平移到DN處,則DN∥GH,DN=GH.根據(jù)(1)的結(jié)論得AM=DN,所以EF=GH;
(1)證明:∵四邊形ABCD是正方形,
∴AB=DA,∠ABE=90°=∠DAH.
∴∠HAO+∠OAD=90°.
∵AE⊥DH,
∴∠ADO+∠OAD=90°.
∴∠HAO=∠ADO.
在△ABE和△DAH中
,
∴△ABE≌△DAH(ASA),
∴AE=DH;
(2)解:EF=GH.
理由:如圖所示:
將FE平移到AM處,則AM∥EF,AM=EF.
將GH平移到DN處,則DN∥GH,DN=GH.
∵EF⊥GH,
∴AM⊥DN,
根據(jù)(1)的結(jié)論得AM=DN,所以EF=GH.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論是________.(寫出正確命題的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運(yùn)動,它從A處出發(fā)去看望B,C,D格點(diǎn)處的其他甲蟲,規(guī)定:向上向右走均為正,向下向左走均為負(fù),如果從A到B記為A→B從B到A記為B→A其中第一個數(shù)表示左右方向移動,第二個數(shù)表示上下方向移動.
(1)圖中A→CC→D
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(3)若圖中格點(diǎn)處另有兩只甲蟲M,N.且M→AM→N,則N→A應(yīng)記為什么?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)C在A、B之間且到A的距離是點(diǎn)C到B的距離3倍,那么我們就稱點(diǎn)C是{A,B}的奇點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C是{A,B}的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B}的奇點(diǎn),但點(diǎn)D是{B,A}的奇點(diǎn).
(知識運(yùn)用)
如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.
(1)數(shù) 所表示的點(diǎn)是{M,N}的奇點(diǎn);數(shù) 所表示的點(diǎn)是{N,M}的奇點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動,當(dāng)P點(diǎn)運(yùn)動到數(shù)軸上的什么位置時,P、A和B中恰有一個點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點(diǎn)D在BC邊上,CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值.
小昊發(fā)現(xiàn),過點(diǎn)A作AF∥BC,交BE的延長線于點(diǎn)F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答:的值為 .
參考小昊思考問題的方法,解決問題:
如圖 3,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點(diǎn)P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,則BP=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)|﹣3|﹣5×(﹣)+(﹣4)
(2)(﹣2)2﹣4÷(﹣)+(﹣1)2016
(3)×(﹣24)
(4)﹣12014﹣(1﹣0.5)÷×[(﹣2)3﹣4]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從有關(guān)方面獲悉,在我市農(nóng)村已經(jīng)實(shí)行了農(nóng)民新型合作醫(yī)療保險制度.享受醫(yī)保的農(nóng)民可在規(guī)定的醫(yī)院就醫(yī)并按規(guī)定標(biāo)準(zhǔn)報銷部分醫(yī)療費(fèi)用.下表是醫(yī)療費(fèi)用報銷的標(biāo)準(zhǔn):
(說明:住院醫(yī)療費(fèi)用為整數(shù),住院醫(yī)療費(fèi)用的報銷分段計算.如:某人住院醫(yī)療費(fèi)用共30000元,則5000元按30%報銷、15000元按40%報銷、余下的10000元按50%報銷;題中涉及到的醫(yī)療費(fèi)均指允許報銷的醫(yī)療費(fèi))
(1)甲農(nóng)民一年內(nèi)實(shí)際門診醫(yī)療費(fèi)為2000元,則標(biāo)準(zhǔn)報銷的金額為 元;
乙農(nóng)民一年住院醫(yī)療費(fèi)為15000元,則按標(biāo)準(zhǔn)報銷的金額為 元;
(2)設(shè)某農(nóng)民一年中住院的實(shí)際醫(yī)療費(fèi)用為x元(5001≤x≤20000),按標(biāo)準(zhǔn)報銷的金額為多少元?(用含x的代數(shù)式表示)
(3)若某農(nóng)民一年內(nèi)本人自負(fù)住院醫(yī)療費(fèi)17000元(自負(fù)醫(yī)療費(fèi)=實(shí)際醫(yī)療費(fèi)﹣按標(biāo)準(zhǔn)報銷的金額),則該農(nóng)民當(dāng)年實(shí)際醫(yī)療費(fèi)用共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD中,M、N分別為AB和CD的中點(diǎn).
(1)求證:四邊形AMCN是平行四邊形;
(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列問題:
(1)計算:6÷(-+).
方方同學(xué)的計算過程如下:原式=6÷(-)+6÷=-12+18=6.
請你判斷方方同學(xué)的計算過程是否正確,若不正確,請你寫出正確的計算過程.
(2)請你參考黑板中老師的講解,用運(yùn)算律簡便計算(請寫出具體的解題過程):
①999×(-15);②999×+333×(-)-999×.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com