【題目】若關(guān)于x的分式方程=3的解為正整數(shù),且關(guān)于y的不等式組至多有六個整數(shù)解,則符合條件的所有整數(shù)m的取值之和為( 。

A.1B.0C.5D.6

【答案】A

【解析】

先求出一元一次不等式組的解集,根據(jù)“不等式組的解至多有六個整數(shù)解”確定m的取值范圍,再解分式方程,依據(jù)“解為正整數(shù)”進(jìn)一步確定m的值,最后求和即可.

解:化簡不等式組為,

解得:﹣2y,

∵不等式組至多有六個整數(shù)解,

≤4,

m≤3,

將分式方程的兩邊同時乘以x2,得

x+m1=3x2),

解得:x=,

∵分式方程的解為正整數(shù),

m+52的倍數(shù),

m≤3,

m=3m=1m=1m=3,

x≠2,

≠2

m1

m=3m=1m=3,

∴符合條件的所有整數(shù)m的取值之和為1

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Qy軸上的一個動點.

1)請直接寫出a,kb的值及關(guān)于x的不等式ax2kx2的解集;

2)當(dāng)點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標(biāo);

3)是否存在以P,Q,AB為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F為對角線AC上兩點,且AECF,請你從圖中找出一對全等三角形,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某交為了開展陽光體育運動,計劃購買籃球和足球,已知足球的單價比籃球的單價多元.若購買個籃球和個足球需花費元.

1)求籃球和足球的單價各是多少元;

2)若學(xué)校購買籃球和足球共個,且購買籃球的總金額不超過購買足球的總金額,則學(xué)校最多可購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.

1)求證:∠BEC=90°

2)求cos∠DAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.

1)求反比例函數(shù)的表達(dá)式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L上有三個正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,∠A30°,BC1,點D在邊AC上,且∠DBC45°,求sinABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.為了解一批燈泡的使用壽命,宜采用普查方式

B.擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣都是正面朝上這一事件發(fā)生的概率為

C.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動后,5點朝上是必然事件

D.甲乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S20.4,S20.6,則甲的射擊成績較穩(wěn)定

查看答案和解析>>

同步練習(xí)冊答案