【題目】已知在等腰△ABC中,AB=AC=,BC=4,點(diǎn)DA出發(fā)以每秒個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā)以每秒4個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),在DE的右側(cè)作∠DEF=∠B,交直線AC于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)△ADF是一個(gè)以AD為腰的等腰三角形時(shí),t的值為_____

【答案】

【解析】

當(dāng)ADF是一個(gè)以AD為腰的等腰三角形時(shí),如圖2,只能AD=AF,由題意DF=4t,BE=4t,DFBE,推出四邊形BEFD是平行四邊形,由ABC∽△BED,可得,延長(zhǎng)構(gòu)建方程即可解決問(wèn)題;

如圖1,過(guò)AAGBCG,

AB=AC=,

BG=CG=2,

由勾股定理得:AG==1,

由圖形可知:∠BAC是鈍角,

∴當(dāng)ADF是一個(gè)以AD為腰的等腰三角形時(shí),如圖2,只能AD=AF,

由題意DF=4t,BE=4t,DFBE,

∴四邊形BEFD是平行四邊形,

∴∴DEF=BDE=B,

∴△ABC∽△BED,

,

,

t=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于BF長(zhǎng)為半徑畫(huà)弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF

1)四邊形ABEF ;(選填矩形、菱形、正方形、無(wú)法確定)(直接填寫(xiě)結(jié)果)

2AE,BF相交于點(diǎn)O,若四邊形ABEF的周長(zhǎng)為40BF=10,則AE的長(zhǎng)為 ABC= °.(直接填寫(xiě)結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.如圖,在平面直角坐標(biāo)系xOy,直線y=kx+b(k0)與雙曲線相交于點(diǎn)A(m,3),B(-6,n),x軸交于點(diǎn)C.

(1)求直線y=kx+b(k0)的解析式;

(2)若點(diǎn)Px軸上,SACP=SBOC,求點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,ACBDCE均為等腰直角三角形,ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為 .

(2)拓展探究

如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,請(qǐng)判斷AD,BE的關(guān)系,并說(shuō)明理由.

(3)解決問(wèn)題

如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫(xiě)出PC的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABD中,ACBDC,點(diǎn)EAC上一點(diǎn),連結(jié)BEDE,DE的延長(zhǎng)線交ABF,已知DE=ABCAD=45°

1)求證:DFAB;

2)利用圖中陰影部分面積完成勾股定理的證明,已知:如圖,在△ABC中,∠ACB=90°,BC=aAC=b,AB=c,求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,線段AC6cm,線段BC15cm,點(diǎn)MAC的中點(diǎn),在CB上取一點(diǎn)N,使得CNNB12,求MN的長(zhǎng).

2)如圖2,若C為線段AB上任意一點(diǎn),滿足AC+CBacmM、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由;

3)若C在線段AB的延長(zhǎng)線上的一點(diǎn),且滿足ACBCbcm,MN分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,將一張矩形紙片 ABCD 沿著對(duì)角線 BD 向上折疊,頂點(diǎn) C 落到點(diǎn) E 處,BEAD 于點(diǎn) F.

1)求證:BDF 是等腰三角形;

2)如圖 2,過(guò)點(diǎn) D DGBE,交 BC 于點(diǎn) G,連接 FG BD 于點(diǎn) O

①判斷四邊形 BFDG 的形狀,并說(shuō)明理由;

②若 AD=AB+2,BD=10,求四邊形 BFDG 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(3,﹣2)在對(duì)稱軸為直線x=2的拋物線y=x2+bx+c的圖象上,其頂點(diǎn)為B.

(1)求頂點(diǎn)B的坐標(biāo);

(2)點(diǎn)C在對(duì)稱軸上,若ABC的面積為2,求點(diǎn)C的坐標(biāo);

(3)將拋物線向左或右平移,使得新拋物線的頂點(diǎn)落在y軸上,問(wèn)原拋物線上是否存在點(diǎn)M,平移后的對(duì)應(yīng)點(diǎn)為N,滿足OM=ON?如果存在,求出點(diǎn)M,N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案