【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A-4,3),點(diǎn)B-4,0,OA=5,以點(diǎn)O為直角頂點(diǎn),點(diǎn)C在第一象限內(nèi),作等腰直角△AOC.

1)直接寫出點(diǎn)C坐標(biāo):

2)直接寫出四邊形ABOC的面積:

3)在y軸找一點(diǎn)P,使得△BOP的面積等于四邊形ABOC的面積,請直接寫出點(diǎn)P坐標(biāo):

【答案】1)(3,4);(2;(3(0,),(,)

【解析】

1)根據(jù)點(diǎn)繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°后坐標(biāo)變化規(guī)律直接寫出即可:點(diǎn)(m,n)繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°后坐標(biāo)為(n,﹣m

2)四邊形ABOC面積=AOC面積+△ABO面積

3)根據(jù)(2)的四邊形面積去尋找△BOPOB為底的合適的高即可

1)∵點(diǎn)(m,n)繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°后坐標(biāo)為(n,﹣m

C坐標(biāo)為(3,4

2)四邊形ABOC面積==

3)由題設(shè)P距原點(diǎn)的距離為x

則:

解得

所以P的坐標(biāo)為(0,),(,)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,E、F分別是BC、AC的中點(diǎn),延長BA到點(diǎn)D,使2AD=AB.連接DE,DF.
(1)求證:AF與DE互相平分;
(2)若BC=4,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是矩形的邊上一點(diǎn),以為折痕翻折,使得點(diǎn)的對(duì)應(yīng)點(diǎn)落在矩形內(nèi)部點(diǎn)處,連接,若,當(dāng)是以為底的等腰三角形時(shí), ___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BDOB∠CAB30°,請根據(jù)已知條件和圖形,寫出三個(gè)正確的結(jié)論(AOBOBD除外)________;_____________;____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題背景】

如圖①所示,在正方形ABCD的內(nèi)部,作∠DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.

【類比研究】

如圖②所示,在正ABC的內(nèi)部,作∠BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合).

(1)ABD,BCE,CAF是否全等?如果是,請選擇其中一對(duì)進(jìn)行證明;

(2)DEF是否為正三角形?請說明理由;

(3)連結(jié)AE,若AF=DF,AB=7,求DEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結(jié)論:①AD=BC;②BD、AC互相平分;四邊形ACED是菱形.其中正確的個(gè)數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線y=x與雙曲線交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(6,m).

(1)求雙曲線的解析式;

(2)點(diǎn)C(n,4)在雙曲線上,求△AOC的面積;

(3)在(2)的條件下,在x軸上找出一點(diǎn)P,使△AOC的面積等于△AOP的面積的三倍.請直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.

(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;

(2)如圖2,H是BC上的點(diǎn),過點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,

①求證:∠ODG=∠OCE;

②當(dāng)AB=1時(shí),求HC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動(dòng)商城的自行車銷售量自2017年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.

(1)若該商城前4個(gè)月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?

(2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬元再購進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷售經(jīng)驗(yàn),A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤最大,該商城應(yīng)如何進(jìn)貨?

查看答案和解析>>

同步練習(xí)冊答案