【題目】已知二次函數(shù)y=ax+bx+c(a≠0)的圖象如圖所示,以下結(jié)論中正確的個(gè)數(shù)是( )
①abc>0、②3a>2b、③m(am+b)≤a﹣b(m為任意實(shí)數(shù))、④4a﹣2b+c<0.
A.1B.2C.3D.4
【答案】C
【解析】
由拋物線開口向下得a<0,由拋物線的對(duì)稱軸為直線x=﹣=﹣1得b=2a<0,由拋物線與y軸的交點(diǎn)在x軸上方得c>0,所以abc>0;由b=2a,則2b﹣3a=a<0,所以2b<3a;根據(jù)拋物線的對(duì)稱軸為直線x=﹣1,開口向下,得到當(dāng)x=﹣1時(shí),y有最大值,所以am2+bm+c≤a﹣b+c(m為任意實(shí)數(shù)),整理得到m(am+b)≤a﹣b(m為任意實(shí)數(shù));根據(jù)拋物線的對(duì)稱性得到拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣3,0)和(﹣2,0)之間,則當(dāng)x=﹣2時(shí),y>0,即4a﹣2b+c>0.
解:∵拋物線開口向下,
∴a<0,
∵拋物線的對(duì)稱軸為直線x=﹣=﹣1<0,
∴b=2a,
∴b<0,
∵拋物線與y軸的交點(diǎn)在x軸上方,
∴c>0,
∴abc>0,所以①正確;
∵b=2a,
∴3a﹣2b=3a﹣4a=﹣a>0,
∴3a>2b,所以②正確;
∵拋物線的對(duì)稱軸為直線x=﹣1,
∴當(dāng)x=﹣1時(shí),y有最大值,
∴am2+bm+c≤a﹣b+c(m為任意實(shí)數(shù)),
∴m(am+b)≤a﹣b(m為任意實(shí)數(shù)),所以③正確;
∵拋物線的對(duì)稱軸為直線x=﹣1,拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(0,0)和(1,0)之間,
∴拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣3,0)和(﹣2,0)之間,
∴當(dāng)x=﹣2時(shí),y>0,
∴4a﹣2b+c>0,所以④錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】植樹節(jié)期間,某單位欲購進(jìn)A、B兩種樹苗,若購進(jìn)A種樹苗3棵,B種樹苗5棵,需2100元,若購進(jìn)A種樹苗4棵,B種樹苗10棵,需3800元.
(1)求購進(jìn)A、B兩種樹苗的單價(jià);
(2)若該單位準(zhǔn)備用不多于8000元的錢購進(jìn)這兩種樹苗共30棵,求A種樹苗至少需購進(jìn)多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一條長(zhǎng)為40cm的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于52cm2,那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?
(2)兩個(gè)正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度.
(2)求DE的長(zhǎng)度.
(3)BE與DF垂直嗎? 說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在紙片中,,,.如圖,直角頂點(diǎn)在原點(diǎn),點(diǎn)在軸負(fù)半軸上,當(dāng)點(diǎn)在軸上向上移動(dòng)時(shí),點(diǎn)也隨之在軸上向右移動(dòng),當(dāng)點(diǎn)到達(dá)原點(diǎn)時(shí),點(diǎn)停止移動(dòng).在移動(dòng)過程中,點(diǎn)到原點(diǎn)的最大距離是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax﹣2(a≠0).
(1)該二次函數(shù)圖象的對(duì)稱軸是直線 ;
(2)若該二次函數(shù)的圖象開口向上,當(dāng)﹣1≤x≤5時(shí),函數(shù)圖象的最高點(diǎn)為M,最低點(diǎn)為N,點(diǎn)M的縱坐標(biāo)為,求點(diǎn)M和點(diǎn)N的坐標(biāo);
(3)若該二次函數(shù)的圖象開口向下,對(duì)于該二次函數(shù)圖象上的兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)x2≥3時(shí),均有y1≥y2,請(qǐng)結(jié)合圖象,直接寫出x1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過矩形的頂點(diǎn),且與,相交于點(diǎn),,,,在圓心同側(cè).已知,.
(1)的長(zhǎng)為__________.
(2)若的半徑長(zhǎng)為,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,D是弧BC的中點(diǎn),過點(diǎn)D作EF垂直于直線AC,垂足為F,交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:EF是⊙O的切線;
(2)若AF=6,EF=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA,PB分別切⊙O于點(diǎn)A、B,∠P=60°,PA=8,那么弦AB的長(zhǎng)是_____;連接OA、OB,則∠AOB=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com