【題目】如圖,在中,,AD是中線,E是AD的中點,過點A作交BE的延長線于F,連接CF.
求證:;
如果,試判斷四邊形ADCF的形狀,并證明你的結論.
【答案】(1)見解析;(2)四邊形ADCF是正方形,理由見解析
【解析】
試題(1)由E是AD的中點,AF∥BC,易證得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中線,根據直角三角形斜邊的中線等于斜邊的一半,即可證得AD=BD=CD=BC,即可證得:AD=AF;(2)由AF=BD=DC,AF∥BC,可證得:四邊形ADCF是平行四邊形,又由AB=AC,根據三線合一的性質,可得AD⊥BC,AD=DC,繼而可得四邊形ADCF是正方形.
試題解析:()∵,
∴,
∵是的中點,
∴,
在和中,
,
∴≌,
∴,
∵在中,,是中線,
∴,
∴.
()四邊形是正方形,
∵,,
∴四邊形是平行四邊形,
∵,是中線,
∵,
∵,
∴四邊形是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)請判斷BD、CE有何大小、位置關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、F為⊙O上兩點,且點C為弧BF的中點,過點C作AF的垂線,交AF的延長線于點E,交AB的延長線于點D.
(1)求證:DE是⊙O的切線;
(2)如果半徑的長為3,tanD=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側,BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉90°至AB′,連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點O在BC上,且OC=3cm,動點P從點E沿射線EC以2cm/s速度運動,連結OP,將線段OP繞點O逆時針旋轉120°得到線段OF.要使點F恰好落在射線EB上,求點P運動的時間ts.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD中,點P為直線AB上一個動點不與點A,B重合,連接DP,將DP繞點P旋轉得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.
問題出現(xiàn):當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關系為______;
題探究:當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關系為______;
當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關系并證明;
問題拓展:在的條件下,若,,則______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(m-4,m+1)在x軸上,將點A右移8個單位,上移4個單位得到點B.
(1)則m= ;B點坐標( );
(2)連接AB交y軸于點C,則= ;
(3)點D是x軸上一點,△ABD的面積為12,求D點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:平面直角坐標系中,把點A(m,4)(m是實數(shù))向右移動7個單位向下移動2個單位得到點B,點B向左移動3個單位向上移動6個單位得到點C,請解答:
(1) 點B,C的坐標是:B ,C ;
(2) 求△ABC的面積;
(3)若連接OC交線段AB于點D,且△ACD與△BCD的面積比不超過0.75時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(m-4,m+1)在x軸上,將點A右移8個單位,上移4個單位得到點B.
(1)則m= ;B點坐標( );
(2)連接AB交y軸于點C,則= ;
(3)點D是x軸上一點,△ABD的面積為12,求D點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com