【題目】如圖,已知點A(m-4,m+1)在x軸上,將點A右移8個單位,上移4個單位得到點B.
(1)則m= ;B點坐標( );
(2)連接AB交y軸于點C,則= ;
(3)點D是x軸上一點,△ABD的面積為12,求D點坐標.
【答案】(1)-1,(3,4);(2);(3)(-11,0)或(1,0)
【解析】
(1)根據(jù)x軸上的點縱坐標為0求得m的值,再根據(jù)點的坐標平移上加下減,右加左減可得B點的坐標;
(2)設(shè)直線AB的函數(shù)關(guān)系式為:y=kx+b,代入A、B兩點的坐標聯(lián)立方程組求得直線AB的函數(shù)關(guān)系式,再求得點C的坐標,根據(jù)勾股定理可得AC與BC的長度,求比值即可;
(3)設(shè)點D坐標為(x,0),則AD=,若AD為△ABD的底,則B點的縱坐標4即為高,根據(jù)三角形面積公式求解即可.
解:(1)∵點A在x軸上,
∴m+1=0,
∴m=-1,
∴m-4=-5,點A(-5,0),
-5+8=3,0+4=4,
∴點B(3,4)
故答案為:-1,(3,4).
(2)設(shè)直線AB的函數(shù)關(guān)系式為:y=kx+b,
代入A、B兩點坐標,可得,
解得:,
∴AB:,
當x=0時,y=,
∴點C(0,),
∴AC==,
BC==,
∴=,
故答案為:.
(3)設(shè)點D坐標為(x,0),則AD=,
S△ABD=,
,
解得:x=-11或x=1,
∴點D的坐標為:(-11,0)或(1,0) .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)和的圖象關(guān)于原點成中心對稱,我們就稱其中一個函數(shù)是另一個函數(shù)的中心對稱函數(shù),也稱函數(shù)和互為中心對稱函數(shù).
求函數(shù)的中心對稱函數(shù);
如圖,在平面直角坐標系xOy中,E,F(xiàn)兩點的坐標分別為,,二次函數(shù)的圖象經(jīng)過點E和原點O,頂點為已知函數(shù)和互為中心對稱函數(shù);
請在圖中作出二次函數(shù)的頂點作圖工具不限,并畫出函數(shù)的大致圖象;
當四邊形EPFQ是矩形時,請求出a的值;
已知二次函數(shù)和互為中心對稱函數(shù),且的圖象經(jīng)過的頂點當時,求代數(shù)式的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,∠ACB=90°,AC=BC,點D為BC邊上的一點.
(1)以點C為旋轉(zhuǎn)中心,將△ACD逆時針旋轉(zhuǎn)90°,得到△BCE,請你畫出旋轉(zhuǎn)后的圖形;
(2)延長AD交BE于點F,求證:AF⊥BE;
(3)若AC=,BF=1,連接CF,則CF的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系中,點 A( 2,2)、B(0,1)點 P 在 x 軸上,且△PAB 的等腰三角形,則滿足條件的點 P 共有()個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,AD是中線,E是AD的中點,過點A作交BE的延長線于F,連接CF.
求證:;
如果,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC 中,AD 平分∠BAC,AD=AB,CM⊥AD 于 M,請你通過觀察和測量,猜想線段 AB、AC 之和與線段 AM 有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC在平面直角坐標系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.
(1)求拋物線的解析式;
(2)求點D的坐標;
(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的直角頂點C置于直線l上,AC=BC,現(xiàn)過A.B兩點分別作直線l的垂線,垂足分別為點D.E.
(1)求證:△ACD≌△CBE.
(2)若BE=3,DE=5,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在ABC中,,,點D是AB中點,
(1)點E為邊AC上一點,連接CD,DE,以DE為邊在DE的左側(cè)作等邊三角形DEF,連接BF.
(i)求證:△BCD為等邊三角形;
(ii)隨著點E位置的變化,的度數(shù)是否變化?若不變化,求出的度數(shù);
(2)DPAB交AC于點P,點E為線段AP上一點,連結(jié)BE,作,如圖2所示,EQ交PD延長線于Q,探究線段PE,PQ與AP之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com