【題目】解題時(shí),最容易想到的方法未必是最簡單的,你可以再想一想,盡量優(yōu)化解法.
例題呈現(xiàn)
關(guān)于x的方程a(x+m)2+b=0的解是x1=1,x2=-2(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是 .
解法探討
(1)小明的思路如圖所示,請你按照他的思路解決這個(gè)問題;
小明的思路
第1步 把1、-2代入到第1個(gè)方程中求出m的值;
第2步 把m的值代入到第1個(gè)方程中求出的值;
第3步 解第2個(gè)方程.
(2)小紅仔細(xì)觀察兩個(gè)方程,她把第2個(gè)方程a(x+m+2)2+b=0中的“x+2”看作第1個(gè)方程中的“x”,則“x+2”的值為 ,從而更簡單地解決了問題.
策略運(yùn)用
(3)小明和小紅認(rèn)真思考后發(fā)現(xiàn),利用方程結(jié)構(gòu)的特點(diǎn),無需計(jì)算“根的判別式”就能輕松解決以下問題,請用他們說的方法完成解答.
已知方程 (a2-2b2)x2+(2b2-2c2)x+2c2-a2=0有兩個(gè)相等的實(shí)數(shù)根,其中a、b、c是△ABC三邊的長,判斷△ABC的形狀.
【答案】(1)x1=-1,x2=-4 (2)1或-2 (3)直角三角形
【解析】
(1)根據(jù)題意利用待定系數(shù)法求解即可.
(2)把后面一個(gè)方程中的x+2看作整體,相當(dāng)于前面一個(gè)方程中的x求解.
(3)先根據(jù)有兩個(gè)相等的實(shí)數(shù)根,再根據(jù)根于系數(shù)的關(guān)系列出方程,找到a、b、c的關(guān)系,從而判斷三角形的形狀.
(1)解:將x1=1,x2=-2代入到方程a(x+m)2+b=0中,
得 ,
∴ m+1=±(m-2),
解得 m=
∴ a(+1)2+b=0.
∴ -=
第2個(gè)方程可變形為(x++2)2=-,
即(x+)2=,
解得:x1=-1,x2=-4
(2)關(guān)于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均為常數(shù),a≠0);
(3)解:∵ (a2-2b2)+(2b2-2c2)+(2c2-a2)=0,
∴ 方程必有一根是x=1
∴ 方程的兩根為x1=x2=1.
∴ x1·x2=1= .
∴ a2=b2+c2.
∴ △ABC是一個(gè)直角三角形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)5次數(shù)學(xué)選拔賽的成績統(tǒng)計(jì)如下表,他們5次考試的總成績相同,請同學(xué)們完成下列問題:
第1 次 | 第2 次 | 第 3次 | 第 4次 | 第5 次 | |
甲成績 | 90 | 40 | 70 | 40 | 60 |
乙成績 | 70 | 50 | 70 | 70 |
(1)統(tǒng)計(jì)表中,求的值,甲同學(xué)成績的極差為多少;
(2)小穎計(jì)算了甲同學(xué)的成績平均數(shù)為60,方差是[(90﹣60)2+(40﹣60)2+(70﹣60)2+(40﹣60)2+(60﹣60)2]=360.
請你求出乙同學(xué)成績的平均數(shù)和方差;
(3)從平均數(shù)和方差的角度分析,甲乙兩位同學(xué)誰的成績更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(概念認(rèn)知):
城市的許多街道是相互垂直或平行的,因此,往往不能沿直線行走到達(dá)目的地,只能按直角拐彎的方式行走.可以按照街道的垂直和平行方向建立平面直角坐標(biāo)系xOy,對兩點(diǎn)A(,)和B(,),用以下方式定義兩點(diǎn)間距離:d(A,B)=+.
(數(shù)學(xué)理解):
(1)①已知點(diǎn)A(﹣2,1),則d(O,A)= ;②函數(shù)(0≤x≤2)的圖像如圖①所示,B是圖像上一點(diǎn),d(O,B)=3,則點(diǎn)B的坐標(biāo)是 .
(2)函數(shù)(x>0)的圖像如圖②所示,求證:該函數(shù)的圖像上不存在點(diǎn)C,使d(O,C)=3.
(3)函數(shù)(x≥0)的圖像如圖③所示,D是圖像上一點(diǎn),求d(O,D)的最小值及對應(yīng)的點(diǎn)D的坐標(biāo).
(問題解決):
(4)某市要修建一條通往景觀湖的道路,如圖④,道路以M為起點(diǎn),先沿MN方向到某處,再在該處拐一次直角彎沿直線到湖邊,如何修建能使道路最短?(要求:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,畫出示意圖并簡要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為4,AB,AC是⊙O的兩條條弦,AB=,點(diǎn)O到AC的距離為,試求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程 kx2+(2k+1)x+k+2=0.
(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(2)若該方程的兩根x1、x2滿足=-3,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證: BE=CF;
(2)請?zhí)骄啃D(zhuǎn)角等于多少度時(shí),四邊形ABDF為菱形,證明你的結(jié)論;
(3)在(2)的條件下,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是( 。
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D.
(1)求證:AE是⊙O的切線;
(2)若BC=2,∠D=60°時(shí),求劣弧AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為x=﹣1.給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com