【題目】如圖,已知半徑為,從⊙外點(diǎn)作⊙的切線,切點(diǎn)分別為點(diǎn)和點(diǎn),,則圖中陰影部分的面積是__________

【答案】

【解析】

連接OD、OE,證明四邊形ACDO是正方形 ,得出AC=OA=2,再求出∠ABC=30°,則∠OAB=ABC=30°,得出扇形OAE的圓心角為120°,作△AOE的高OF,求出OFAE的長(zhǎng),利用面積公式即可求出陰影部分的面積.

連接ODOE,

ACBC的切線,

OAAC,ODBC,AC=CD

∠CAO=∠CDO=90°

∴四邊形ACDO是正方形

RtACB中,∵AC=OA=2BC=,

AB=

∠ABC=30°

AOBC,

∴∠OAB=ABC=30°,

OA=OE,

∴∠OAE=OEA=30°,

∴∠AOE=120°,

OOFABF,

OF=

AF=

AE=2,

S弓形ADE=S扇形OAE-SAOE=

S陰影=SACB- S弓形ADE=-()=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,米,米,中點(diǎn),動(dòng)點(diǎn)2/秒的速度從出發(fā),沿著的邊,按照AEDA順序環(huán)行一周,設(shè)出發(fā)經(jīng)過秒后,的面積為(平方米),求間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線PA交O于A、B兩點(diǎn),AE是O的直徑,點(diǎn)C為O上一點(diǎn),且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長(zhǎng)線與AC的延長(zhǎng)線的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;

(3)若AB=3,AE=,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB=4,BC=3,點(diǎn)EAB的中點(diǎn),將矩形ABCD沿CE折疊,使得點(diǎn)B落到點(diǎn)F的位置.

(1)求證AFCE.

(2)AF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)方形中,,點(diǎn)在邊上,由運(yùn)動(dòng),速度為,運(yùn)動(dòng)時(shí)間為秒,將沿著翻折至,點(diǎn)對(duì)應(yīng)點(diǎn)為所在直線與邊交與點(diǎn),

1)如圖,當(dāng)時(shí),求證:;

2)如圖,當(dāng)為何值時(shí),點(diǎn)恰好落在邊上;

3)如圖,當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔABC中,AB=AC,點(diǎn)EF在邊BC上,BE=CF,點(diǎn)DAF的延長(zhǎng)線上,AD=AC

1)求證:ΔABEΔACF;

2)若∠BAE=30°,則∠ADC= (直接寫答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax+bx+4a0)過點(diǎn)A(1, 1)B(5, 1),與y軸交于點(diǎn)C.

1)求拋物線表達(dá)式;

2)如圖1,連接CB,以CB為邊作CBPQ,若點(diǎn)P在直線BC下方的拋物線上,Q為坐標(biāo)平面內(nèi)的一點(diǎn),且CBPQ的面積為30,

①求點(diǎn)P坐標(biāo);

②過此二點(diǎn)的直線交y軸于F, 此直線上一動(dòng)點(diǎn)G,當(dāng)GB+最小時(shí),求點(diǎn)G坐標(biāo).

3)如圖2,⊙O1過點(diǎn)A、B、C三點(diǎn),AE為直徑,點(diǎn)M 上的一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),∠MBN為直角,邊BNME的延長(zhǎng)線交于N,求線段BN長(zhǎng)度的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案