【題目】拋物線y=ax+bx+4(a≠0)過點A(1, ﹣1),B(5, ﹣1),與y軸交于點C.
(1)求拋物線表達式;
(2)如圖1,連接CB,以CB為邊作CBPQ,若點P在直線BC下方的拋物線上,Q為坐標平面內(nèi)的一點,且CBPQ的面積為30,
①求點P坐標;
②過此二點的直線交y軸于F, 此直線上一動點G,當GB+最小時,求點G坐標.
(3)如圖2,⊙O1過點A、B、C三點,AE為直徑,點M為 上的一動點(不與點A,E重合),∠MBN為直角,邊BN與ME的延長線交于N,求線段BN長度的最大值
【答案】(1)y=x﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)
【解析】
(1)把點A(1,-1),B(5,-1)代入拋物線y=ax2+bx+4解析式,即可得出拋物線的表達式;
(2)①如圖,連接PC,過點P作y軸的平行線交直線BC于R,可求得直線BC的解析式為:y=-x+4,設(shè)點P(t,t2-6t+4),R(t,-t+4),因為CBPQ的面積為30,所以S△PBC= ×(t+4t2+6t4)×5=15,解得t的值,即可得出點P的坐標;②當點P為(2,-4)時,求得直線QP的解析式為:y=-x-2,得F(0,-2),∠GOR=45°,因為GB+
GF=GB+GR,所以當G于F重合時,GB+GR最小,即可得出點G的坐標;當點P為(3,-5)時,同理可求;
(3)先用面積法求出sin∠ACB=,tan∠ACB=,在Rt△ABE中,求得圓的直徑,因為MB⊥NB,可得∠N=∠AEB=∠ACB,因為tanN==,所以BN=MB,當MB為直徑時,BN的長度最大.
(1) 解:(1)∵拋物線y=ax2+bx+4(a≠0)過點A(1,-1),B(5,-1),
∴ 解得
∴拋物線表達式為y=x﹣6x+4.
(2)①如圖,連接PC,過點P作y軸的平行線交直線BC于R,
設(shè)直線BC的解析式為y=kx+m,
∵B(5,-1),C(0,4),
∴ ,解得
∴直線BC的解析式為:y=-x+4,
設(shè)點P(t,t2-6t+4),R(t,-t+4),
∵CBPQ的面積為30,
∴S△PBC= ×(t+4t2+6t4)×5=15,
解得t=2或t=3,當t=2時,y=-4
當t=3時,y=-5,
∴點P坐標為(2,-4)或(3,-5);
②當點P為(2,-4)時,
∵直線BC解析式為:y=-x+4,QP∥BC,
設(shè)直線QP的解析式為:y=-x+n,
將點P代入,得-4=-2+n,n=-2,
∴直線QP的解析式為:y=-x-2,
∴F(0,-2),∠GOR=45°,
∴GB+GF=GB+GR
當G于F重合時,GB+GR最小,此時點G的坐標為(0,-2),
同理,當點P為(3,-5)時,直線QP的解析式為:y=-x-2,
同理可得點G的坐標為(0,-2),
(3) )∵A(1,-1),B(5,-1)C(0,4),
∴AC= ,BC=5,
∵S△ABC=AC×BCsin∠ACB=AB×5,
∴sin∠ACB=,tan∠ACB=,
∵AE為直徑,AB=4,
∴∠ABE=90°,
∵sin∠AEB=sin∠ACB==,
∴AE=2,
∵MB⊥NB,∠NMB=∠EAB,
∴∠N=∠AEB=∠ACB,
∴tanN==,
∴BN=MB,
當MB為直徑時,BN的長度最大,為3.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為配合“一帶一路”國家倡議,某鐵路貨運集裝箱物流園區(qū)正式啟動了2期擴建工程一項地基基礎(chǔ)加固處理工程由2、8兩個工程公司承擔建設(shè),己知2工程公司單獨建設(shè)完成此項工程需要180天工程公司單獨施工天后,工程公司參與合作,兩工程公司又共同施工天后完成了此項工程.
(1)求工程公司單獨建設(shè)完成此項工程需要多少天?
(2)由于受工程建設(shè)工期的限制,物流園區(qū)管委會決定將此項工程劃包成兩部分,要求兩工程公司同時開工,工程公司建設(shè)其中一部分用了天完成,工程公司建設(shè)另一部分用了天完成,其中,均為正整數(shù),且,,求、兩個工程公司各施工建設(shè)了多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年是我市全面推進中小學校“社會主義核心價值觀”教育年.某校對全校學生進行了中期檢測評價,檢測結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個等級.并隨機抽取若干名學生的檢測結(jié)果作為樣本進行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計表(圖1)和統(tǒng)計圖(圖2).
請根據(jù)圖1、圖2提供的信息,解答下列問題:
(1)本次隨機抽取的樣本容量為
(2) , .
(3)請在圖2中補全條形統(tǒng)計圖.
(4)若該校共有學生800人,據(jù)此估算,該校學生在本次檢測中達到“(優(yōu)秀)”等級的學生人數(shù)為 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=45°,將△ABC繞點A逆時針方向旋轉(zhuǎn)得△AEF,其中,E,F是點B,C旋轉(zhuǎn)后的對應點,BE,CF相交于點D.若四邊形ABDF為菱形,則∠CAE的大小是( )
A. 45°B. 60°C. 75°D. 90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價為6元/千克,到了收獲季節(jié)投入市場銷售時,調(diào)查市場行情后,發(fā)現(xiàn)該蜜柚不會虧本,且每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某村農(nóng)戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質(zhì)期為50天,按照(2)的銷售方式,能否在保質(zhì)期內(nèi)全部銷售完這批蜜柚?若能,請說明理由;若不能,應定銷售價為多少元時,既能銷售完又能獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的方程(x﹣3)(x﹣5)=m(m>0)有兩個實數(shù)根α,β(α<β),則下列選項正確的是( 。
A. 3<α<β<5 B. 3<α<5<β C. α<2<β<5 D. α<3且β>5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com