【題目】列方程解應用題
根據(jù)城市規(guī)劃設計,某市工程隊準備為該城市修建一條長4800米的公路.鋪設600米后,為了盡量減少施工對城市交通造成的影響,該工程隊增加人力,實際每天修建公路的長度是原計劃的2倍,結(jié)果9天完成任務,該工程隊原計劃每天鋪設公路多少米?
【答案】解:設原計劃每天鋪設公路x米,根據(jù)題意,得……………………1分
. ……………………3分
去分母,得 1200+4200=18x(或18x=5400)
解得. ……………………4分
經(jīng)檢驗, 是原方程的解且符合題意. ……………………5分
答:原計劃每天鋪設公路300米.
【解析】試題分析:設原計劃每天鋪設公路x米,根據(jù)實際每天修建公路的長度是原計劃的2倍,結(jié)果9天完成任務,以時間做為等量關系可列方程求解.
試題解析:設原計劃每天鋪設公路x米,根據(jù)題意,得(1分)
去分母,得1200+4200=18x(或18x=5400)
解得x=300.(4分)
經(jīng)檢驗,x=300是原方程的解且符合題意.(5分)
答:原計劃每天鋪設公路300米.
科目:初中數(shù)學 來源: 題型:
【題目】圖1、圖2分別是的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,線段的端點在小正方形的頂點上,請在圖1、圖2中各畫一個圖形,分別滿足以下要求:
(1)在圖1中畫一個以線段為一邊且周長為的平行四邊形,所畫圖形的各頂點必須在小正方形的頂點上.
(2)在圖2中畫一個以線段為一邊的等腰鈍角三角形,所畫等腰三角形的各頂點必須在小正方形的頂點上,并直接寫出該等腰三角形的周長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀理解)
在解方程組或求代數(shù)式的值時,可以用整體代入或整體求值的方法,化難為易.
(1)解方程組
(2)已知,求x+y+z的值
解:(1)把②代入①得:x+2×1=3.解得:x=1.
把x=1代入②得:y=0.
所以方程組的解為,
(2)①×2得:8x+6y+4z=20.③
②﹣③得:x+y+z=5.
(類比遷移)
(1)若,則x+2y+3z= .
(2)解方程組
(實際應用)
打折前,買39件A商品,21件B商品用了1080元.打折后,買52件A商品,28件B商品用了1152元,比不打折少花了多少錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,(1)正方形ABCD及等腰Rt△AEF有公共頂點A,∠EAF=90°, 連接BE、DF.將Rt△AEF繞點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關系和位置關系?結(jié)合圖(1)給予證明;
(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰Rt△AEF變?yōu)?/span>Rt△AEF,且AD=kAB,AF=kAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;
(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將Rt△AEF變?yōu)?/span>△AEF,且∠BAD=∠EAF=,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關系,用表示出直線BE、DF形成的銳角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,E為對角線BD的延長線上一點.
(1)求證:AE=CE.
(2)若BC=6,AE=10,∠BAE=120,求BE的長,并直接寫出DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線yxb與x軸交于點A,與y軸交于點B,與直線y=x交于點E,點E的橫坐標為3.
(1)求點A的坐標.
(2)在x軸上有一點P(m,0),過點P作x軸的垂線,與直線yxb交于點C,與直線y=x交于點D.若CD≥5,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上按如下操作:連結(jié)AC,作AC的垂直平分線MN分別交AD、AC、BC于M、O、N,連結(jié)AN,CM,則四邊形ANCM是( 。
A. 矩形 B. 菱形 C. 正方形 D. 無法判斷
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
關于的方程:
的解為: ,
(可變形為)的解為: ,
的解為: ,
的解為: ,
…………
根據(jù)以上材料解答下列問題:
(1)①方程的解為 .
②方程的解為 .
(2)解關于方程:
① ()
②()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線交 y軸于點為A,頂點為D,對稱軸與x軸交于點H.
(1)求頂點D的坐標(用含m的代數(shù)式表示);
(2)當拋物線過點(1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;
(3)當拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com