【題目】如圖,菱形ABCD中,E為對角線BD的延長線上一點.
(1)求證:AE=CE.
(2)若BC=6,AE=10,∠BAE=120,求BE的長,并直接寫出DE的長為 .
【答案】(1)見解析;(2)BE=11,.
【解析】
(1)由菱形的性質(zhì)得出AB=CB,∠ABE=∠CBE,證明△ABE≌△CBE,即可得出結(jié)論;
(2)連接AC交BD于O,作EF⊥BA延長線于點F,先求AF,EF的長度,再根據(jù)勾股定理求出BE長,證明△AOB∽△EFB,從而求出BO長,即可求出DE的長度.
解:(1)∵四邊形ABCD是菱形,
∴AB=CB,∠ABE=∠CBE,
在△ABE和△CBE中
∴△ABE≌△CBE(SAS),
∴AE=CE;
(2)連接AC交BD于O,作EF⊥BA延長線于點F,如圖所示:
∵∠BAE=120°,
∴∠EAF=180°-∠BAE=60°,
∴∠AEF=90°-60°=30°,
∵AE=10,
∴AF=,
∴,
∵BC=6,
∴BA=BC=6,
∴BF=11,
∴,
∵四邊形ABCD為菱形,
∴AC⊥BD,
∴△AOB∽△EFB,
∴,即,
∴,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個計算裝置示意圖,A、B是數(shù)據(jù)輸入口,C是計算輸出口,計算過程是由A、B分別輸入自然數(shù)m和n,經(jīng)計算后得自然數(shù)K由C輸出,此種計算裝置完成的計算滿足以下三個性質(zhì):
(1)若A、B分別輸入1,則輸出結(jié)果為1;
(2)若A輸入任何固定的自然數(shù)不變,B輸入自然數(shù)增大1,則輸出結(jié)果比原來增大2;
(3)若B輸入任何固定的自然數(shù)不變,A輸入自然數(shù)增大1,則輸出結(jié)果為原來的2倍。
試問:(1)若A輸入1,B輸入自然數(shù)4,輸出結(jié)果為 。
(2)若B輸入1,A輸入自然數(shù)5,輸出結(jié)果為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“共享單車,綠色出行”,現(xiàn)如今騎共享單車出行不但成為一種時尚,也稱為共享經(jīng)濟(jì)的一種新形態(tài),某校九(1)班同學(xué)在街頭隨機調(diào)查了一些騎共享單車出行的市民,并將他們對各種品牌單車的選擇情況繪制成如下兩個不完整的統(tǒng)計圖(A:摩拜單車;B:ofo單車;C:HelloBike).請根據(jù)圖中提供的信息,解答下列問題:
(1)求出本次參與調(diào)查的市民人數(shù);
(2)將上面的條形圖補充完整;
(3)若某區(qū)有10000名市民騎共享單車出行,根據(jù)調(diào)查數(shù)據(jù)估計該區(qū)有多少名市民選擇騎摩托單車出行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)用“=”、“>”、“<”填空
; 6+3 ; ;7+7 ;
(2)由(1)中各式猜想a+b與的大小,并說明理由.
(3)請利用上述結(jié)論解決下面問題:
某同學(xué)在做一個面積為1800cm2,對角線互相垂直的四邊形風(fēng)箏時,求用來做對角線的竹條至少要多少厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們規(guī)定:點關(guān)于“的衍生點”,,其中為常數(shù)且,如:點(,)關(guān)于“的衍生點”,即,即.
(1)求點關(guān)于“的衍生點” 的坐標(biāo);
(2)若點關(guān)于“的衍生點” ,求點的坐標(biāo);
(3)若點在軸的正半軸上,點關(guān)于“的衍生點” ,點關(guān)于“的衍生點” ,且線段的長度不超過線段長度的一半,請問:是否存在值使得到軸的距離是到軸距離的倍?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題
根據(jù)城市規(guī)劃設(shè)計,某市工程隊準(zhǔn)備為該城市修建一條長4800米的公路.鋪設(shè)600米后,為了盡量減少施工對城市交通造成的影響,該工程隊增加人力,實際每天修建公路的長度是原計劃的2倍,結(jié)果9天完成任務(wù),該工程隊原計劃每天鋪設(shè)公路多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(a,0),B(b,3),C(4,0),且滿足+(a﹣b+6)2=0,線段AB交y軸于點F,點D是y軸正半軸上的一點.
(1)求出點A,B的坐標(biāo);
(2)如圖2,若DB∥AC,∠BAC=a,且AM,DM分別平分∠CAB,∠ODB,求∠AMD的度數(shù);(用含a的代數(shù)式表示).
(3)如圖3,坐標(biāo)軸上是否存在一點P,使得△ABP的面積和△ABC的面積相等?若存在,求出P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時,△PBQ有最大面積?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com