【題目】已知拋物線(xiàn)C1:y=ax2+bx﹣ (a≠0)經(jīng)過(guò)點(diǎn)A(1,0)和B(﹣3,0).
(1)求拋物線(xiàn)C1的解析式,并寫(xiě)出其頂點(diǎn)C的坐標(biāo).
(2)如圖1,把拋物線(xiàn)C1沿著直線(xiàn)AC方向平移到某處時(shí)得到拋物線(xiàn)C2 , 此時(shí)點(diǎn)A,C分別平移到點(diǎn)D,E處.設(shè)點(diǎn)F在拋物線(xiàn)C1上且在x軸的上方,若△DEF是以EF為底的等腰直角三角形,求點(diǎn)F的坐標(biāo).

(3)如圖2,在(2)的條件下,設(shè)點(diǎn)M是線(xiàn)段BC上一動(dòng)點(diǎn),EN⊥EM交直線(xiàn)BF于點(diǎn)N,點(diǎn)P為線(xiàn)段MN的中點(diǎn),當(dāng)點(diǎn)M從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí):①tan∠ENM的值如何變化?請(qǐng)說(shuō)明理由;②點(diǎn)M到達(dá)點(diǎn)C時(shí),直接寫(xiě)出點(diǎn)P經(jīng)過(guò)的路線(xiàn)長(zhǎng).

【答案】
(1)解:∵拋物線(xiàn)C1:y=ax2+bx﹣ (a≠0)經(jīng)過(guò)點(diǎn)A(1,0)和B(﹣3,0),

解得 ,

∴拋物線(xiàn)C1的解析式為y= x2+x﹣ ,

∵y= x2+x﹣ = (x+1)2﹣2,

∴頂點(diǎn)C的坐標(biāo)為(﹣1,﹣2);


(2)解:如圖1,作CH⊥x軸于H,

∵A(1,0),C(﹣1,﹣2),

∴AH=CH=2,

∴∠CAB=∠ACH=45°,

∴直線(xiàn)AC的解析式為y=x﹣1,

∵△DEF是以EF為底的等腰直角三角形,

∴∠DEF=45°,

∴∠DEF=∠ACH,

∴EF∥y軸,

∵DE=AC=2 ,

∴EF=4,

設(shè)F(m, m2+m﹣ ),則E(m,m﹣1),

∴(﹣ m2+m﹣ )﹣(m﹣1)=4,

解得m=﹣3(舍)或m=3,

∴F(3,6);


(3)解:①tan∠ENM的值為定值,不發(fā)生變化;

如圖2中,作EG⊥AC,交BF于G,

∵DF⊥AC,BC⊥AC,

∴DF∥BC,

∵DF=BC=AC,

∴四邊形DFBC是平行四邊形,

∵∠CDF=90°,

∴四邊形DFBC是矩形,

∴EG=BC=AC=2 ,

∵EN⊥EM,

∴∠MEN=90°,

∵∠CEG=90°,

∴∠CEM=∠NEG,

∴△ENG∽△EMC,

=

∵F(3,6),EF=4,

∴E(3,2),

∵C(﹣1,﹣2),

∴EC=4

= =2,

∴tan∠ENM= =2;

∵tan∠ENM的值為定值,不發(fā)生變化;

②如圖3﹣1中,

∵直角三角形EMN中,PE= MN,直角三角形BMN中,PB= MN,

∴PE=PB,

∴點(diǎn)P在EB的垂直平分線(xiàn)上,

∴點(diǎn)P經(jīng)過(guò)的路徑是線(xiàn)段PP′,如圖3﹣2,

當(dāng)點(diǎn)M與B重合時(shí),

∵△EGN∽△ECB,

= ,

∵EC=4 ,EG=BC=2 ,

∴EB=2 ,

=

∴EN= ,

∵P1P2是△BEN的中位線(xiàn),

∴P1P2= EN= ;

∴點(diǎn)M到達(dá)點(diǎn)C時(shí),點(diǎn)P經(jīng)過(guò)的路線(xiàn)長(zhǎng)為


【解析】(1)用待定系數(shù)法即可求得解析式,把解析式化為頂點(diǎn)式即可求得頂點(diǎn)坐標(biāo);(2)根據(jù)A、C點(diǎn)的坐標(biāo)求得直線(xiàn)AC的解析式為y=x﹣1,根據(jù)題意的EF=4,求得EF∥y軸,設(shè)F(m, m2+m﹣ ),則E(m,m﹣1),從而得出(﹣ m2+m﹣ )﹣(m﹣1)=4,解方程即可求得F的坐標(biāo);(3)先求得四邊形DFBC是平行矩形,作EG⊥AC,交BF于G,然后判斷出△ENG∽△EMC,根據(jù)相似三角形的性質(zhì)對(duì)應(yīng)邊成比例即可求得tan∠ENM的值,②首先證明點(diǎn)P在EB的垂直平分線(xiàn)上,推出點(diǎn)P經(jīng)過(guò)的路徑是線(xiàn)段PP,當(dāng)點(diǎn)M與B重合時(shí),根據(jù)勾股定理和三角形相似求得EN,然后根據(jù)三角形中位線(xiàn)定理即可求得。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°BC=8cm,AC=6cm,點(diǎn)EBC的中點(diǎn),動(dòng)點(diǎn)PA點(diǎn)出發(fā)以每秒2cm的速度沿A→C→B運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒,那么當(dāng)t=____,△APE的面積等于6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空完成推理過(guò)程:

如圖,BCEAFE是直線(xiàn),ABCD,∠1=2,∠3=4,求證ADBE

證明:∵ABCD(已知)

∴∠4=BAE 

∵∠3=4(已知)

∴∠3=   (等量代換)

∵∠1=2(已知)

∴∠1+CAF=2+CAF  

即∠BAF=CAD

∴∠3=   (等量代換)

ADBE  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于50%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=70時(shí),y=50;x=80時(shí),y=40.
(1)求一次函數(shù)y=kx+b的表達(dá)式,并確定自變量x的取值范圍.
(2)若該商場(chǎng)獲得利潤(rùn)為w元,銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20208月高郵高鐵將通車(chē),高郵至北京的路程約為900km,甲、乙兩人從高郵出發(fā),分別乘坐汽車(chē)A與高鐵B前往北京.已知A車(chē)的平均速度比B車(chē)的平均速度慢150km/h,A車(chē)的行駛時(shí)間是B車(chē)的行駛時(shí)間的2.5倍,兩車(chē)的行駛時(shí)間分別為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,紙上有5個(gè)邊長(zhǎng)為1的小正方形組成的紙片.可以用下面的方法把它剪拼成一個(gè)正方形.

1)拼成的正方形的面積是多少,邊長(zhǎng)是多少.

2)你能在3×3的正方形方格圖3中,連接四個(gè)點(diǎn)組成面積為5的正方形嗎?

3)如圖4,你能把這十個(gè)小正方形組成的圖形紙,剪開(kāi)并拼成一個(gè)大正方形嗎?若能,請(qǐng)畫(huà)出示意圖,并寫(xiě)出邊長(zhǎng)為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,矩形ABCD中,AB4cm,BC8cm,AC的垂直平分線(xiàn)EF分別交AD、BC于點(diǎn)E、F,垂足為O

1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.

2)如圖1,求AF的長(zhǎng).

3)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿AFBCDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)PAFBA停止,點(diǎn)QCDEC停止.在運(yùn)動(dòng)過(guò)程中,點(diǎn)P的速度為每秒1cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①問(wèn)在運(yùn)動(dòng)的過(guò)程中,以A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形有可能是矩形嗎?若有可能,請(qǐng)求出運(yùn)動(dòng)時(shí)間t和點(diǎn)Q的速度;若不可能,請(qǐng)說(shuō)明理由.

②若點(diǎn)Q的速度為每秒0.8cm,當(dāng)A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在第一象限且點(diǎn)的縱坐標(biāo)為.當(dāng)是腰長(zhǎng)為的等腰三角形時(shí),則點(diǎn)的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車(chē)司機(jī)小李某天上午營(yíng)運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車(chē)?yán)锍蹋▎挝唬?/span>)如下:

,,,,,

問(wèn):(1)將最后一位乘客送到目的地時(shí),小李在什么位置?

2)若汽車(chē)耗油量為(升/千米),這天上午小李接送乘客,出租車(chē)共耗油多少升?

3)若出租車(chē)起步價(jià)為8元,起步里程為(包括),超過(guò)部分每千米1.2元,問(wèn)小李這天上午共得車(chē)費(fèi)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案