【題目】20208月高郵高鐵將通車,高郵至北京的路程約為900km,甲、乙兩人從高郵出發(fā),分別乘坐汽車A與高鐵B前往北京.已知A車的平均速度比B車的平均速度慢150km/h,A車的行駛時間是B車的行駛時間的2.5倍,兩車的行駛時間分別為多少?

【答案】A車行駛的時間為9小時,B車行駛的時間為3.6小時.

【解析】

設(shè)B車行駛的時間為t小時,則A車行駛的時間為2.5t小時,根據(jù)平均速度=路程÷時間結(jié)合A車的平均速度比B車的平均速度慢150km/h,即可得出關(guān)于t的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.

解:設(shè)B車行駛的時間為t小時,則A車行駛的時間為2.5t小時,

根據(jù)題意得:,

解得:t=3.6,

經(jīng)檢驗,t=3.6是原分式方程的解,且符合題意,

2.5t=9

答:A車行駛的時間為9小時,B車行駛的時間為3.6小時.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,拋物線y=﹣ x2+bx+c過點A(0,4)和C(8,0),點P(t,0)是線段OC上的動點,PB⊥PA,且PB= PA,過點B作x軸的垂線,過點A作y軸的垂線,兩直線相交于點D;

(1)求拋物線的解析式;
(2)當t為何值時,點D落在拋物線上;
(3)是否存在t,使得以A,B,D為頂點的三角形與△AOP相似?若存在,求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(-2,1),B(-3,-2),C1,-2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

1)在圖中畫出△A1B1C1;

2)點A1,B1,C1的坐標分別為   、  、  

3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩建筑物AB、CD的水平距離BC為60m,從A點測得D點的俯角α為30°,測得C點的俯角β為45°,求建筑物AB、CD的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場投入13 800元資金購進甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:

類別/單價

成本價

銷售價(/)

24

36

33

48

(1)該商場購進甲、乙兩種礦泉水各多少箱?

(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y=ax2+bx﹣ (a≠0)經(jīng)過點A(1,0)和B(﹣3,0).
(1)求拋物線C1的解析式,并寫出其頂點C的坐標.
(2)如圖1,把拋物線C1沿著直線AC方向平移到某處時得到拋物線C2 , 此時點A,C分別平移到點D,E處.設(shè)點F在拋物線C1上且在x軸的上方,若△DEF是以EF為底的等腰直角三角形,求點F的坐標.

(3)如圖2,在(2)的條件下,設(shè)點M是線段BC上一動點,EN⊥EM交直線BF于點N,點P為線段MN的中點,當點M從點B向點C運動時:①tan∠ENM的值如何變化?請說明理由;②點M到達點C時,直接寫出點P經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰ABC的底邊BC13cm,D是腰AB上一點,且CD12cm, BD5cm

1)求證:BDC是直角三角形;

2)求ABC的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:

根據(jù)以上信息解答下列問題:

1)求AB兩種商品的單價;

2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ACDF中,AC=DF,點BCD上,點EDF上,BC=DE=aAC=BD=b,AB=BE=c,且ABBE

1)用兩種不同的方法表示長方形ACDF的面積S

方法一:S=

方法二:S=

2)求ab,c之間的等量關(guān)系(需要化簡)

3)請直接運用(2)中的結(jié)論,求當c=5,a=3,S的值

查看答案和解析>>

同步練習冊答案