【題目】如圖,點E,F在菱形ABCD的對邊上,AE⊥BC.∠1=∠2.
(1)判斷四邊形AECF的形狀,并證明你的結(jié)論.
(2)若AE=4,AF=2,試求菱形ABCD的面積.
【答案】四邊形AECF是矩形,理由見解析;(2)菱形ABCD的面積=20.
【解析】
(1)由菱形的性質(zhì)可得AD=BC,AD∥BC,∠BAD=∠BCD,由∠1=∠2可得∠EAF=∠FCB=90°=∠AEC,可得四邊形AECF是矩形;
(2)由勾股定理可求AB的值,由菱形的面積公式可求解.
解:(1)四邊形AECF是矩形
理由如下:
∵四邊形ABCD是菱形
∴AD=BC=AB,AD∥BC,∠BAD=∠BCD,
∵AE⊥BC
∴AE⊥AD
∴∠FAE=∠AEC=90°
∵∠1=∠2
∴∠BAD-∠1=∠BCD-∠2
∴∠EAF=∠FCB=90°=∠AEC
∴四邊形AECF是矩形
(2)∵四邊形AECF是矩形
∴AF=EC=2
在Rt△ABE中,AB2=AE2+BE2,
∴AB2=16+(AB-2)2,
∴AB=5
∴菱形ABCD的面積=5×4=20
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象在第四象限的交點為點B.
(1)求直線AB的解析式;
(2)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中如圖所示,
(1)S△ABC= .
(2)x軸上是否存在點P,使得S△BCP=2S△ABC,若不存在,說明理由;若存在,求出P點的坐標.
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動.將邊長為2的正方形ABCD與邊長為3的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn)DG=BE且DG⊥BE,請你給出證明.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當點B恰好落在線段DG上時,請你幫他求出此時△ADG的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明過程:
如圖,AB∥CD,AD∥BC,BE平分∠ABC,DF平分∠ADC.
求證:BE∥DF.
證明:∵AB∥CD,(已知)
∴∠ABC+∠C=180°.( )
又∵AD∥BC,(已知)
∴ +∠C=180°.( )
∴∠ABC=∠ADC.( )
∵BE平分∠ABC,(已知)
∴∠1=∠ABC.( )
同理,∠2=∠ADC.
∴ =∠2.
∵AD∥BC,(已知)
∴∠2=∠3.( )
∴∠1=∠3,
∴BE∥DF.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過點A(6,0)的直線y=kx﹣3與直線y=﹣x交于點B,點P從點O出發(fā)以每秒1個單位長度的速度向點A勻速運動.
(1)求點B的坐標;
(2)當△OPB是直角三角形時,求點P運動的時間;
(3)當BP平分△OAB的面積時,直線BP與y軸交于點D,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD置于平面直角坐標系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數(shù)圖象如圖2所示.
(1)點A的坐標為 ,矩形ABCD的面積為 ;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知 a b , a 與b 兩個數(shù)在數(shù)軸上對應的點分別為點 A 、點 B ,求 A 、 B 兩點之間的距離.
(探索)
小明利用絕對值的概念,結(jié)合數(shù)軸,進行探索:
(1)補全小明的探索
(應用)
(2)若點C 對應的數(shù)c ,數(shù)軸上點C 到A、B 兩點的距離相等,求c .(用含a、b 的代數(shù)式表示)
(3)若點 D對應的數(shù) d ,數(shù)軸上點 D 到 A 的距離是點 D 到 B 的距離的nn 0 倍,請?zhí)剿?/span> n 的取值范圍與點 D 個數(shù)的關(guān)系,并直接寫出a、b 、d、n 的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com