【題目】如圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對角線BD翻折,點C落在點C′處,BC′交AD于點E,求線段DE的長.

【答案】解:設(shè)ED=x,則AE=6﹣x, ∵四邊形ABCD為矩形,
∴AD∥BC,
∴∠EDB=∠DBC;
由題意得:∠EBD=∠DBC,
∴∠EDB=∠EBD,
∴EB=ED=x;
由勾股定理得:
BE2=AB2+AE2
即x2=9+(6﹣x)2 ,
解得:x=3.75,
∴ED=3.75
【解析】根據(jù)題意得到BE=DE,然后根據(jù)勾股定理得到關(guān)于線段AB、AE、BE的方程,解方程即可.
【考點精析】認真審題,首先需要了解矩形的性質(zhì)(矩形的四個角都是直角,矩形的對角線相等),還要掌握翻折變換(折疊問題)(折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBDCE均為等腰三角形,點A、D、E在同一直線上,連接BF.若∠CABCBACDECED50°.

(1)求證:ADBE;

(2)求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點O為AC邊上的一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點F,交∠ACB內(nèi)角平分線CE于E.

(1)試說明EO=FO;
(2)當(dāng)點O運動到何處時,四邊形AECF是矩形并證明你的結(jié)論;
(3)若AC邊上存在點O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗探究
(1)探究發(fā)現(xiàn) 數(shù)學(xué)活動課上,小明說“若直線y=2x﹣1向左平移3個單位,你能求平移后所得直線所對應(yīng)函數(shù)表達式嗎?”
經(jīng)過一番討論,小組成員展示了他們的解答過程:
在直線y=2x﹣1上任取點A(0,﹣1),
向左平移3個單位得到點A′(﹣3,﹣1)
設(shè)向左平移3個單位后所得直線所對應(yīng)的函數(shù)表達式為y=2x+n.
因為y=2x+n過點A′(﹣3,﹣1),
所以﹣6+n=﹣1,
所以n=5,
填空:所以平移后所得直線所對應(yīng)函數(shù)表達式為
(2)類比運用 已知直線y=2x﹣1,求它關(guān)于x軸對稱的直線所對應(yīng)的函數(shù)表達式
(3)拓展運用 將直線y=2x﹣1繞原點順時針旋轉(zhuǎn)90°,請直接寫出:旋轉(zhuǎn)后所得直線所對應(yīng)的函數(shù)表達式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各圖都是一個漢字的一半,你能想像出它的另一半并能確定它是什么字嗎?(有幾個字的筆劃在對稱軸上)

,,,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形的外心在這個三角形的一邊上,那么這個三角形是( )

A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是(  )

A.P3,2)到x軸距離是3

B.在平面直角坐標系中,點(2,﹣3)和點(﹣2,3)表示同一個點

C.y0,則點Mx,y)在y軸上

D.在平面直角坐標系中,第三象限內(nèi)點的橫坐標與縱坐標同號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】擲一枚正方體的骰子,各個面上分別標有數(shù)字12,34,5,6,求下列事件發(fā)生的頻率的大小:

①朝上的數(shù)字是奇數(shù);

②朝上的數(shù)字能被3除余1

③朝上的數(shù)字不是3的倍數(shù);

④朝上的數(shù)字小于6

⑤朝上的數(shù)字不小于3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級某班40位同學(xué)的年齡如表所示:

年齡(歲)

13

14

15

16

人數(shù)

3

16

19

2

則該班40名同學(xué)年齡的眾數(shù)是_____

查看答案和解析>>

同步練習(xí)冊答案