【題目】已知:如圖,點D在△ABC的邊BC上,AB=AC=CD,AD=BD,求△ABC各內(nèi)角的度數(shù).
【答案】∠B=∠C=36°,∠CAB=108°.
【解析】
由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,從而可推出∠BAC=3∠DBA,根據(jù)三角形的內(nèi)角和定理即可求得∠DBA的度數(shù),從而不難求得∠BAC的度數(shù).
設(shè)∠B=α
∵AB=AC,
∴∠C=α,
∵BD=BA,
∴∠BAD=α,
∵∠ADC為△ABC外角,
∴∠ADC=2α,
∵AC=DC,
∴∠CAD=2α,
∴∠BAC=3α,
∴在△ABC中∠B+∠C+∠BAC=5α=180°,
∴α=36°,
∴∠B=∠C=36°,
∴∠CAB=108°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于三個數(shù)a,b,c,用max{a,b,c}表示這三個數(shù)中最大數(shù),例如:max{-2,1,0}=1,max
解決問題:
(1)填空:max{1,2,3}=______,如果max{3,4,2x-6}=2x-6,則x的取值范圍為______;
(2)如果max{2,x+2,-3x-7}=5,求x的值;
(3)如圖,在同一坐標(biāo)系中畫出了三個一次函數(shù)的圖象:y=-x-3,y=x-1和y=3x-3請觀察這三個函數(shù)的圖象,
①在圖中畫出max{-x-3,x-1,3x-3}對應(yīng)的圖象(加粗);
②max{-x-3,x-1,3x-3}的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊矩形OABC的一邊BC,使點C落在OA邊的點D處,已知折痕BE=5,且,以O(shè)為原點,OA所在的直線為x軸建立如圖所示的平面直角坐標(biāo)系,拋物線l:y=-+c經(jīng)過點E,且與AB邊相交于點F.
(1)求證:△ABD∽△ODE;
(2)若M是BE的中點,連接MF,求證:MF⊥BD;
(3)P是線段BC上一點,點Q在拋物線l上,且始終滿足PD⊥DQ,在點P運動過程中,能否使得PD=DQ?若能,求出所有符合條件的Q點坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)求出格點△ABC(頂點均在格點上)的面積;
(2)畫出格點△ABC關(guān)于直線DE對稱的;
(3)在DE上畫出點Q,使△QAB的周長最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD沿EF折疊,使點A與點C重合,點D落在點G處,EF為折痕.
(1)求證:△FGC≌△EBC;
(2)試判斷△CEF的形狀,并證明你的結(jié)論;
(3)若AB=8,AD=4,求四邊形ECGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點從點出發(fā)沿邊向以的速度移動,點從點出發(fā)沿向點以的速度移動,當(dāng)其中一個點到達終點時兩個點同時停止運動,在兩個點運動過程中,請回答:
經(jīng)過多少時間,的面積是?
請你利用配方法,求出經(jīng)過多少時間,四邊形面積最?并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點. 將OA繞點O逆時針旋轉(zhuǎn)θ °至OP(0<θ<180),當(dāng)△BCP恰為軸對稱圖形時,θ的值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,點O是BC的中點,如果點M、N分別在線段AB、AC上移動,并在移動過程中始終保持AN=BM.
(1)求證:△ANO≌△BMO;
(2)求證:OM⊥ON.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com