【題目】觀察下列解題過程:
計(jì)算:1+5+52+53+…+524+525的值.
解:設(shè)S=1+5+52+53+…+524+525,(1)
則5S=5+52+53+…+525+526(2)
(2)﹣(1),得4S=526﹣1
S=
通過閱讀,你一定學(xué)會(huì)了一種解決問題的方法,請(qǐng)用你學(xué)到的方法計(jì)算:
(1)1+3+32+33+…+39+310
(2)1+x+x2+x3+…+x99+x100.
【答案】(1)S=;(2)S=.
【解析】
試題分析:這道題是求等比數(shù)列前n項(xiàng)的和:
(1)設(shè)S=1+3+32+33+…+39+310,等號(hào)兩邊都乘以3可解決;
(2)需要分類討論:Ⅰ當(dāng)x=1時(shí),易得結(jié)果;Ⅱ當(dāng)x≠1時(shí),設(shè)S=1+x+x2+x3+…+x99+x100等號(hào)兩邊都乘以x可解決.
解:(1)設(shè)S=1+3+32+33+…+39+310①
則3S=3+32+33+…+39+310+311②
②﹣①得2S=311﹣1,
所以S=;
(2)由于x為未知數(shù),故需要分類討論:
Ⅰ當(dāng)x=1時(shí),1+x+x2+x3+…+x99+x100=1+1+12+…+199+1100=101;
Ⅱ當(dāng)x≠1時(shí),設(shè)S=1+x+x2+x3+…+x99+x100①
則xS=x+x2+x3+…+x99+x100+x101②
②﹣①得(x﹣1)S=x101﹣1,
所以S=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依此為2,4,6,8,...,頂點(diǎn)依此用A1,A2,A3,A4......表示,則頂點(diǎn)A55的坐標(biāo)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線AB經(jīng)過點(diǎn)A(﹣2,0),與y軸的正半軸交于點(diǎn)B,且OA=2OB.
(1)求直線AB的函數(shù)表達(dá)式;
(2)點(diǎn)C在直線AB上,且BC=AB,點(diǎn)E是y軸上的動(dòng)點(diǎn),直線EC交x軸于點(diǎn)D,設(shè)點(diǎn)E的坐標(biāo)為(0,m)(m>2),求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)的條件下,若CE:CD=1:2,點(diǎn)F是直線AB上的動(dòng)點(diǎn),在直線AC上方的平面內(nèi)是否存在一點(diǎn)G,使以C,G,F,E為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)B作BM⊥x軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A,B,C,回答下列問題:
(1)若將點(diǎn)B向右移動(dòng)6個(gè)單位后,三個(gè)點(diǎn)所表示的數(shù)中最小的數(shù)是多少?
(2)在數(shù)軸上找一點(diǎn)D,使點(diǎn)D到A,C兩點(diǎn)的距離相等,寫出點(diǎn)D表示的數(shù);
(3)在點(diǎn)B左側(cè)找一點(diǎn)E,使點(diǎn)E到點(diǎn)A的距離是到點(diǎn)B的距離的2倍,并寫出點(diǎn)E表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx(k≠0)沿著y軸向上平移3個(gè)單位長(zhǎng)度后,與x軸交于點(diǎn)B(3,0),與y軸交于點(diǎn)C,拋物線y=x2+bx+c過點(diǎn)B、C且與x軸的另一個(gè)交點(diǎn)為A.
(1)求直線BC及該拋物線的表達(dá)式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△DBC的面積;
(3)如果點(diǎn)F在y軸上,且∠CDF=45°,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”。圖中點(diǎn)A表示-10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個(gè)長(zhǎng)度單位,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,問:
(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至點(diǎn)C需要________秒;
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,再解答下列問題:
題:分解因式:
解:將“”看成整體,設(shè),則原式=
再將“”還原,得原式=.
上述解題用到的是“整體思想”,“整體思想”是數(shù)學(xué)解題中常用的一種思想方法,請(qǐng)你仿照上面的方法解答下列問題:
(1)因式分解: ; .
(2)因式分解: ; .
(3)求證:若為正整數(shù),則式子的值一定是某一個(gè)正整數(shù)的平方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖O為坐標(biāo)原點(diǎn),四邊形ABCD是菱形,A(4,4),B點(diǎn)在第二象限,AB=5,AB與y軸交于點(diǎn)F,對(duì)角線AC交y軸于點(diǎn)E
(1)直接寫出B、C點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)P從C點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿折線段C﹣D﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用含t的代數(shù)式表示△EDP的面積;
(3)在(2)的條件下,是否存在一點(diǎn)P,使△APE沿其一邊翻折構(gòu)成的四邊形是菱形?若存在,請(qǐng)直接寫出當(dāng)t為多少秒時(shí)存在符合條件的點(diǎn)P;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com