【題目】按要求完成下列證明:

已知:如圖,在△ABC中,CDAB于點(diǎn)D,EAC上一點(diǎn),且∠1+290°.

求證:DEBC

證明:∵CDAB(已知),

∴∠1+   90°(   ).

∵∠1+290°(已知),

   =∠2   ).

DEBC   ).

【答案】EDC;垂直定義;∠EDC;同角的余角相等;內(nèi)錯(cuò)角相等,兩直線平行.

【解析】

直接利用平行線的判定方法結(jié)合垂直的定義分析得出答案.

證明:∵CDAB(已知),

∴∠1+EDC90° 垂直定義).

∵∠1+290°(已知),

∴∠EDC=∠2 同角的余角相等).

DEBC 內(nèi)錯(cuò)角相等,兩直線平行).

故答案為:∠EDC;垂直定義;∠EDC;同角的余角相等;內(nèi)錯(cuò)角相等,兩直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,正方形沿軸向左平移,若與正方形重疊部分的面積為平方單位,則點(diǎn)移動(dòng)后的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過(guò)點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A,∠AEO=∠C,OE交BC于點(diǎn)F.

(1)求證:OE∥BD;
(2)當(dāng)⊙O的半徑為5,sin∠DBA= 時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別過(guò)點(diǎn)C,D作BD,AC的平行線,相交于點(diǎn)E.若AD=6,則點(diǎn)E到AB的距離是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,這四邊行ABCD中,點(diǎn)M、N分別在AB,CD邊上,將四邊形ABCD沿MN翻折,使點(diǎn)B、C分別在四邊形外部點(diǎn)B1 , C1處,則∠A+∠B1+∠C1+∠D=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖象與一次函數(shù)y=3x的圖象相交于點(diǎn)A,其橫坐標(biāo)為2.

(1)求k的值;
(2)點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為3.過(guò)點(diǎn)B作CB∥OA,交x軸于點(diǎn)C,直接寫出線段OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“蘑菇石”是我國(guó)著名的自然保護(hù)區(qū)梵凈山的標(biāo)志,小明從山腳B點(diǎn)先乘坐纜車到達(dá)觀景平臺(tái)DE觀景,然后再沿著坡腳為29°的斜坡由E點(diǎn)步行到達(dá)“蘑菇石”A點(diǎn),“蘑菇石”A點(diǎn)到水平面BC的垂直距離為1890m.如圖,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的長(zhǎng)度.(結(jié)果精確到0.1m,可參考數(shù)據(jù)sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D是 上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DFDB;
(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng)和⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案