【題目】過正方形(四邊都相等,四個(gè)角都是直角)的頂點(diǎn)作一條直線

圖(1 圖(2 圖(3

1)當(dāng)不與正方形任何一邊相交時(shí),過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn)如圖(1),請寫出,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.

2)若改變直線的位置,使邊相交如圖(2),其它條件不變,的關(guān)系會(huì)發(fā)生變化,請直接寫出,,的數(shù)量關(guān)系,不必證明;

3)若繼續(xù)改變直線的位置,使邊相交如圖(3),其它條件不變,,,的關(guān)系又會(huì)發(fā)生變化,請直接寫出,,的數(shù)量關(guān)系,不必證明.

【答案】(1),證明見解析;(2);(3)

【解析】

1)根據(jù)同角的余角相等可證,再證,根據(jù)全等三角形的對應(yīng)邊相等進(jìn)行代換即可;

2)根據(jù)同角的余角相等可證,再證,根據(jù)全等三角形的對應(yīng)邊相等進(jìn)行代換即可;

3)根據(jù)同角的余角相等可證,再證,根據(jù)全等三角形的對應(yīng)邊相等進(jìn)行代換即可.

1,證明:

四邊形是正方形

,

,

,

2,理由是:

四邊形是正方形

,

,

,

EF=AF-AE=BE-DF

3,理由是:

四邊形是正方形

,

,

,

EF=AE-AF=DF-BE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABE,DFACF,若BDCD,BECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的函數(shù)y=(5m-3)x2-n+(m+n).

(1)當(dāng)m,n為何值時(shí),函數(shù)是一次函數(shù)?

(2)當(dāng)m,n為何值時(shí),函數(shù)是正比例函數(shù)?

(3)當(dāng)m,n為何值時(shí),函數(shù)是反比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,分別是邊上的動(dòng)點(diǎn),在圖中畫出值最小時(shí)的圖形,并直接寫出的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形AOBC中,對角線交于點(diǎn)E,雙曲線y=(k>0)經(jīng)過A、E兩點(diǎn),若AC : OB = 1:3,梯形AOBC面積為24,則k =( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:,在分式中,對于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.例如:像,這樣的分式是假分式;像,,這樣的分式是真分式.類似的,假分式也可以化為整數(shù)與真分式的和的形式.

例如:;

;

(1)分式 分式(填“真”或“假”)

(2)將分式化為整式與真分式的和的形式;

(3)如果分式的值為整數(shù),求的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA=OB,OC=OD,AD和BC相交于點(diǎn)E,則圖中共有全等三角形的對數(shù)( 。

A. 2對 B. 3對 C. 4對 D. 5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校運(yùn)動(dòng)會(huì)需購買A,B兩種獎(jiǎng)品,若購買A種獎(jiǎng)品3件和B種獎(jiǎng)品2件,共需60元;若購買A種獎(jiǎng)品5件和B種獎(jiǎng)品3件,共需95元.

1)求AB兩種獎(jiǎng)品的單價(jià)各是多少元?

2)學(xué)校計(jì)劃購買AB兩種獎(jiǎng)品共100件,購買費(fèi)用不超過1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,設(shè)購買A種獎(jiǎng)品m件,購買費(fèi)用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.求出自變量m的取值范圍,并確定最少費(fèi)用W的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ABC是等邊三角形,DBC延長線上任意一點(diǎn),以AD為一邊向右側(cè)作等邊△ADE,連接CE.

1.求證:△CAE≌△BAD;

2.判斷直線ABEC的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案