【題目】若四邊形的兩條對角線分別平分兩組對角,則該四邊形一定是(

A. 平行四邊形 B. 菱形 C. 矩形 D. 正方形

【答案】B

【解析】

由題意得出∠1=2=ABC,3=4=ADC由三角形內(nèi)角和定理得出∠BAD=BCD,同理ABC=ADC,證出四邊形ABCD是平行四邊形證出∠1=3,得出AB=AD,即可得出結(jié)論

如圖所示

BD平分∠ABCADC,∴∠1=2=ABC,3=4=ADC

∵∠BAD+∠1+∠3=180°,BCD+∠2+∠4=180°,∴∠BAD=BCD,同理ABC=ADC,∴四邊形ABCD是平行四邊形1=3,AB=AD∴四邊形ABCD是菱形

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.以AB為邊作菱形ABCD,使點(diǎn)Cx軸正半軸上,點(diǎn)D在第一象限,則點(diǎn)D的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,∠ABC90度,DAC邊上的動(dòng)點(diǎn),連結(jié)BD,E、F分別是AB、BC上的點(diǎn),且DEDF.、(1)如圖1,若DAC邊上的中點(diǎn).

1)填空:∠C   ,∠DBC   ;

2)求證:BDE≌△CDF

3)如圖2D從點(diǎn)C出發(fā),點(diǎn)EPD上,以每秒1個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng),過點(diǎn)BBPAC,且PBAC4,點(diǎn)EPD上,設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒(0≤1≤4)在點(diǎn)D運(yùn)動(dòng)的過程中,圖中能否出現(xiàn)全等三角形?若能,請直接寫出t的值以及所對應(yīng)的全等三角形的對數(shù),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達(dá)到D處,此時(shí)在D處測得山頂B的仰角為60°,求山高BC(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD平分∠BAC,DEAB于點(diǎn)E,DFAC于點(diǎn)F,試說明ADEF的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,對角線相交于點(diǎn),將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),分別交,于點(diǎn),下列說法不正確的是(

A. 當(dāng)時(shí),四邊形一定為平行四邊形

B. 當(dāng)四邊形為直角梯形時(shí),線段

C. 當(dāng)時(shí),四邊形一定為菱形

D. 在旋轉(zhuǎn)的過程中,線段總相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)完全相同的矩形紙片、如圖放置,重疊部分是四邊形

試證明四邊形為菱形;

是什么位置關(guān)系,試證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC,AB=AC,∠BAC=90°點(diǎn)D是平面內(nèi)一點(diǎn);

1)如圖1 BDCD,∠DCA=30°BAD=

2)如圖2,若BDC=45°,點(diǎn)FCD中點(diǎn),求證AFCD;

3)如圖3,∠BDA=3CBD,BD=,BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點(diǎn)邊上,點(diǎn)邊上,,若為等腰三角形,則的度數(shù)為(  )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案