【題目】如圖,點為雙曲線上的一點,連接并延長與雙曲線在第三象限交于點,軸正半軸上一點,連接并延長與雙曲線交于點,連接,已知的面積為6,則點的坐標為______

【答案】(,1)

【解析】

先求出反比例函數(shù)的關系式,設點MN的坐標,利用雙曲線的對稱性可求出SMON=SBMN,這樣可得到關于兩點坐標的關系式,聯(lián)立可求出答案.

連接ON,如圖:


∵點A1,2)為雙曲線上,

,

∴反比例函數(shù)的關系式為,

由雙曲線的對稱性可知:OA=OB
SMBO=SMAO,SNBO=SNAO,
SMON=SBMN=3,

設點M0,m),Nn,),

SMON=,即①,

設直線AM的關系式為,將M0,mA12)代入得,

,
解得:,,
∴直線AM的關系式為

Nn,)代入得,②,

聯(lián)立①和②解得:(舍去)

時,

∴點N的坐標為(,1),

故答案為:(1)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,AE是∠CAB的角平分線,BM平分∠ABCAE于點M,經過B,M兩點的OBC于點G,交AB于點FFB恰為O的直徑.

1)求證:AEO相切;

2)當BC6,cosC,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點BBDAB,點CD都在AB上方,AD交△BCD的外接圓⊙O于點E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長.

②若△BDC為直角三角形,求所有滿足條件的BD的長.

3)若BCEC ,則   .(直接寫出結果即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016廣西賀州市)如圖,將線段AB繞點O順時針旋轉90°得到線段AB,那么A(﹣2,5)的對應點A的坐標是(  )

A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是某小區(qū)入口抽象成的平面示意圖,已知入口BC4米,欄桿支點O與地面BC的距離為0.8米,當欄桿OM升起到與門衛(wèi)室外墻AB的夾角成30°時,一輛寬2.4米,高1.6米的轎車能否從該入口的正中間位置進入該小區(qū)?若能,請通過計算說明;若不能,請說明理由.(參考數(shù)據(jù):1.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,線段的弦且,相切于點,為直徑,連接,

1)求證:相切;

2)求證:;

3)若,求的值和線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地設他們同時出發(fā),運動的時間為(分),與乙地的距離為(米),圖中線段EF,折線分別表示兩人與乙地距離和運動時間之間的函數(shù)關系圖象

1)李越騎車的速度為 /分鐘;F點的坐標為 ;

2)求李越從乙地騎往甲地時, 之間的函數(shù)表達式;

3)求王明從甲地到乙地時, 之間的函數(shù)表達式;

4)求李越與王明第二次相遇時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線l1yx2+c,當其函數(shù)值y1時,只有一個自變量x的值與其對應

1)求c的值;

2)將拋物線l1經過平移得到拋物線l2yxp21

①若拋物線l2x軸交于A,B兩點(AB的左側),與y軸交于點C,記ABC的外心為P,當﹣1≤p時,求點P的縱坐標的取值范圍;

②當0≤x≤2時,對于拋物線l1上任意點E,拋物線l2上總存在點F,使得點E、F縱坐標相等,求p的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經過點A﹣1,0)、C03),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案