【題目】如圖,已知為的直徑,線段是的弦且,與相切于點(diǎn),為直徑,連接,.
(1)求證:與相切;
(2)求證:;
(3)若,,求的值和線段的長(zhǎng).
【答案】(1)見解析;(2)見解析;(2),
【解析】
(1)連接OC.欲證PC是⊙O的切線,只需證明OC⊥PC即可;通過全等三角形△COP≌△DOP(SAS)的對(duì)應(yīng)角∠OCP=∠ODP=90°來證明該結(jié)論;
(2)先證得△ODE△OPD,得到,根據(jù)OD是半徑,AB是直徑,即可證明結(jié)論;
(3)利用三角形中位線定理求得OE=3,設(shè)⊙O為R,利用勾股定理得到,再在Rt中利用構(gòu)建方程即可求得R的值,在Rt中可求得的值,利用(2)的結(jié)論可求得PO的長(zhǎng),從而求得線段的長(zhǎng).
(1)連接OC,
∵在⊙O中,OD=OC,AB⊥CD于點(diǎn)E,
∴∠COP=∠DOP.
在△OCP和△ODP中,
,
∴△OCP≌△ODP(SAS).
∴∠OCP=∠ODP,
又∵PD切⊙O于點(diǎn)D,OD為⊙O半徑,
∴OD⊥PD,
∴∠ODP=90°,
∴∠OCP=90°,
∴OC⊥PC于點(diǎn)C,
∴PC是⊙O的切線;
(2)∵PD切⊙O于點(diǎn)D,
∴∠ODP=90°,
∵AB⊥CD于點(diǎn)E,
∴∠OED=90°,
∴Rt△ODERt△OPD,
∴,
∴,
∵OD是⊙O的半徑,AB是⊙O的直徑,
∴OD=AB,
∴,
即:;
(3)∵DF是⊙O的直徑,
∴∠FCD=90°,
∵∠OED=90°,
∴OE∥FC,
又∵DO=OF,
∴OE=FC=3,
設(shè)⊙O為R,
在Rt中:,則,
在Rt中,AE=R+3,
∵,
∴,
∴R+3=2,
解得:R=5(負(fù)值已舍),
在Rt中,FD=2R=10,FC=6,
∴,
由(2)得:,
即,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老王面前有兩個(gè)容積相同的杯子,杯子甲他裝了三分之一的葡萄酒,杯子乙他裝了半杯的王老吉涼茶,老張過來將裝有涼茶的杯子乙倒?jié)M了酒,老王又將杯子乙中飲料倒一部分到杯子甲,使得兩個(gè)杯子的飲料分量相同.然后老王讓老張先選一杯一起喝了,如果老張不想多喝酒,那么他應(yīng)該選擇( )
A.甲杯B.乙杯C.甲、乙是一樣的D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動(dòng)、娛樂、上網(wǎng)等四個(gè)方面調(diào)查了若干學(xué)生的興趣愛好;并將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)在這次研究中,一共調(diào)查了______名學(xué)生;若該校共有1500名學(xué)生,估計(jì)全校愛好運(yùn)動(dòng)的學(xué)生共有______名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算閱讀部分圓心角是______度;
(3)若該校九年級(jí)愛好閱讀的學(xué)生有150人,估計(jì)九年級(jí)有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一組數(shù)據(jù):85,95,85,80,80,85.表述正確的是( )
A.眾數(shù)是80和85B.平均數(shù)是86C.方差是25D.中位數(shù)是80
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為雙曲線上的一點(diǎn),連接并延長(zhǎng)與雙曲線在第三象限交于點(diǎn),為軸正半軸上一點(diǎn),連接并延長(zhǎng)與雙曲線交于點(diǎn),連接、,已知的面積為6,則點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海中有一個(gè)小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點(diǎn)A測(cè)得小島P在北偏東60°方向上,航行12海里到達(dá)B點(diǎn),這時(shí)測(cè)得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險(xiǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三年級(jí)進(jìn)行女子800米測(cè)試,甲、乙兩名同學(xué)同時(shí)起跑,甲同學(xué)先以a米/秒的速度勻速跑,一段時(shí)間后提高速度,以米/秒的速度勻速跑,b秒到達(dá)終點(diǎn),乙同學(xué)在第60秒和第140秒時(shí)分別減慢了速度,設(shè)甲、乙兩名同學(xué)所的路程為s(米),乙同學(xué)所用的時(shí)間為t(秒),s與t之間的函數(shù)圖象如圖所示.
(1)乙同學(xué)起跑的速度為______米/秒;
(2)求a、b的值;
(3)當(dāng)乙同學(xué)領(lǐng)先甲同學(xué)60米時(shí),直接寫出t的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)的圖象與函數(shù)(x>0)的圖象交于A(m,1),B(1,n)兩點(diǎn).
(1)求k,m,n的值;
(2)利用圖象寫出當(dāng)x≥1時(shí),和的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,雙曲線l:y=(x>0)過點(diǎn)A(a,b),B(2,1)(0<a<2);過點(diǎn)A作AC⊥x軸,垂足為C.
(1)求l的解析式;
(2)當(dāng)△ABC的面積為2時(shí),求點(diǎn)A的坐標(biāo);
(3)點(diǎn)P為l上一段曲線AB(包括A,B兩點(diǎn))的動(dòng)點(diǎn),直線l1:y=mx+1過點(diǎn)P;在(2)的條件下,若y=mx+1具有y隨x增大而增大的特點(diǎn),請(qǐng)直接寫出m的取值范圍.(不必說明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com