【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫的如意湖,是來鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識(shí)后,劉明和王華同學(xué)決定用自己學(xué)到的知識(shí)測量“大王米”的高度,他們制訂了測量方案,并利用課余時(shí)間完成了實(shí)地測量.測量項(xiàng)目及結(jié)果如下表:
項(xiàng)目 | 內(nèi)容 | |||
課題 | 測量鄭州會(huì)展賓館的高度 | |||
測量示意圖 | 如圖,在E點(diǎn)用測傾器DE測得樓頂B的仰角是α,前進(jìn)一段距離到達(dá)C點(diǎn)用測傾器CF測得樓頂B的仰角是β,且點(diǎn)A、B、C、D、E、F均在同一豎直平面內(nèi) | |||
測量數(shù)據(jù) | ∠α的度數(shù) | ∠β的度數(shù) | EC的長度 | 測傾器DE,CF的高度 |
40° | 45° | 53米 | 1.5米 | |
… | … |
請你幫助該小組根據(jù)上表中的測量數(shù)據(jù),求出鄭州會(huì)展賓館的高度(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)興趣小組的同學(xué)調(diào)查了若干名家長對(duì)“初中學(xué)生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的條形與扇形統(tǒng)計(jì)圖.
依據(jù)圖中信息,得出下列結(jié)論:
(1)接受這次調(diào)查的家長人數(shù)為200人;
(2)在扇形統(tǒng)計(jì)圖中,“不贊同”的家長部分所對(duì)應(yīng)的扇形圓心角大小為162°;
(3)表示“無所謂”的家長人數(shù)為40人;
(4)隨機(jī)抽查一名接受調(diào)查的家長,恰好抽到“很贊同”的家長的概率是.
其中正確的結(jié)論個(gè)數(shù)為( )
A.4 | B.3 | C.2 | D.1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=16cm,BC=8cm,一動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿著CB方向以2cm/s的速度運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從A出發(fā)沿著AC邊以4cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(s).
(1)若△PCQ的面積是△ABC面積的,求t的值?
(2)△PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.
(1)求坡底C點(diǎn)到大樓距離AC的值;
(2)求斜坡CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是∠ABC和∠ACB兩個(gè)內(nèi)角平分線的交點(diǎn),過點(diǎn)O作EF∥BC分別交AB,AC于點(diǎn)E,F,已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數(shù)圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點(diǎn)A、D在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B、E在反比例函數(shù)y=(k為常數(shù),k≠0)的圖象上,正方形ADEF的面積為4,且BF=2AF,則k值為( )
A. 4B. -4C. 6D. -6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017遼寧省葫蘆島市)如圖,∠MAN=60°,AP平分∠MAN,點(diǎn)B是射線AP上一定點(diǎn),點(diǎn)C在直線AN上運(yùn)動(dòng),連接BC,將∠ABC(0°<∠ABC<120°)的兩邊射線BC和BA分別繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線AM交于點(diǎn)D和點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)C在射線AN上時(shí),①請判斷線段BC與BD的數(shù)量關(guān)系,直接寫出結(jié)論;
②請?zhí)骄烤段AC,AD和BE之間的數(shù)量關(guān)系,寫出結(jié)論并證明;
(2)如圖2,當(dāng)點(diǎn)C在射線AN的反向延長線上時(shí),BC交射線AM于點(diǎn)F,若AB=4,AC=,請直接寫出線段AD和DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017甘肅省天水市)△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時(shí)BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半徑為3半圓O的直徑.CD是圓中可移動(dòng)的弦,且CD=3,連接 AD、BC相交于點(diǎn)P,弦CD從C與A重合的位置開始,繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,則交點(diǎn)P運(yùn)動(dòng)的路徑長是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com