【題目】甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲先出發(fā),甲出發(fā)0.2小時后乙開汽車前往,設(shè)甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km),如圖是y1y2關(guān)于x的函數(shù)圖像.

1)求x為何值時,兩人相遇?

2)求x為何值時,兩人相距5km?(直接寫出結(jié)果)

【答案】1)當(dāng)x=0.8時,兩人相遇;(2x小時,兩人相距5千米.

【解析】

1)用待定系數(shù)求函數(shù)解析式,再通過可解方程組求解;(2)根據(jù)兩者的位置關(guān)系,分4種情況分析,解方程可得.

解:(1)設(shè)OA:, BC:,

過點(1.2,72) ,

所以,

過點(0.2,0) (1.1,72) ,

解得

.

解得

∴當(dāng)x=0.8時,兩人相遇.

(2)60x=5,

解得x=

60x- (80x- 16)=5 ,

解得x= ;

80x- 16- 60x=5 ,

解得x=

60x=72-5

解得x=

故當(dāng)x小時,兩人相距5千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD交于OEF過點OAD,BC分別交于EF,若AB4,BC5OE1.5,則四邊形EFCD的周長_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形ABCD繞點B順時針旋轉(zhuǎn)得到矩形A1BC1D1,點A、C、D的對應(yīng)點分別為A1、C1D1

1)當(dāng)點A1落在AC上時

①如圖1,若∠CAB60°,求證:四邊形ABD1C為平行四邊形;

②如圖2,AD1CB于點O.若∠CAB≠60°,求證:DOAO;

2)如圖3,當(dāng)A1D1過點C時.若BC5CD3,直接寫出A1A的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y()與甲出發(fā)的時間x()之間的關(guān)系如圖中折線OA-AB-BC-CD所示.

(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;

(2)求乙的步行速度;

(3)求乙比甲早幾分鐘到達(dá)終點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,則點D到BC的距離是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A在反比例函數(shù) 的圖象上,作,邊BCx軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若的面積為6,則k=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四個頂點中某一點為起點,另一個頂點為終點作向量,可以作出8個不同的向量:、、、、、、、(由于是相等向量,因此只算一個)

⑴作兩個相鄰的正方形(如圖一)。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;

⑵作個相鄰的正方形(如圖二)“一字型”排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;

⑶作個相鄰的正方形(如圖三)排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;

⑷作個相鄰的正方形(如圖四)排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇科版九年級下冊數(shù)學(xué)課本91頁有這樣一道習(xí)題:

(1)復(fù)習(xí)時,小明與小亮、數(shù)學(xué)老師交流了自己的兩個見解,并得到了老師的認(rèn)可:

①可以假定正方形的邊長AB=4a,則AEDE=2a,DFa,利用兩邊分別成比例且夾角相等的兩個三角形相似可以證明ABEDEF;請結(jié)合提示寫出證明過程

②圖中的相似三角形共三對,而且可以借助于ABEDEF中的比例線段來證明EBF與它們相似證明過程如下:

(2)交流之后,小亮嘗試對問題進(jìn)行了變化,在老師的幫助下,提出了新的問題,請你解答:

已知:如圖,在矩形ABCD中,EAD的中點,EFECABF,連結(jié)FC

ABAE

①求證:AEFECF

②設(shè)BC=2,ABa,是否存在a值,使得AEFBFC相似.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標(biāo)系內(nèi),△ABC的三個頂點坐標(biāo)分別為A1,4),B1,1),C3,1).

1)畫出△ABC左平移4個單位得到的△A1B1C1,且A1的坐標(biāo)為   ;

2)畫出△ABC繞點O順時針旋轉(zhuǎn)90°后的△A2B2C2;

3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊答案