【題目】在平面直角坐標(biāo)系xOy中,已知拋物線yx2mx+n

1)當(dāng)m2時(shí),

①求拋物線的對(duì)稱軸,并用含n的式子表示頂點(diǎn)的縱坐標(biāo);

②若點(diǎn)A(﹣2,y1),Bx2,y2)都在拋物線上,且y2y1,則x2的取值范圍是   ;

2)已知點(diǎn)P(﹣12),將點(diǎn)P向右平移4個(gè)單位長度,得到點(diǎn)Q.當(dāng)n3時(shí),若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.

【答案】(1)①n1;②x2<﹣2x24;(2m2m2

【解析】

1)①把m2代入拋物線解析式,利用x,求出對(duì)稱軸,然后把頂點(diǎn)橫坐標(biāo)代入,即可用含n的式子表示出頂點(diǎn)的縱坐標(biāo);

②利用拋物線的對(duì)稱性,及開口向上,可知離對(duì)稱軸越遠(yuǎn),函數(shù)值越大,從而可解;

2)把n3代入,再分拋物線經(jīng)過點(diǎn)Q,拋物線經(jīng)過點(diǎn)P1,2),拋物線的頂點(diǎn)在線段PQ上,三種情況分類討論,得出相應(yīng)的m值,從而得結(jié)論.

解:(1①∵m2,

拋物線為yx22x+n

x1,

拋物線的對(duì)稱軸為直線x1

當(dāng)線x1時(shí),y12+nn1,

頂點(diǎn)的縱坐標(biāo)為:n1

②∵拋物線的對(duì)稱軸為直線x1,開口向上,

x=﹣2x1的距離為3,

點(diǎn)A(﹣2y1),Bx2,y2)都在拋物線上,且y2y1,則x2的取值范圍是x2<﹣2x24,

故答案為:x2<﹣2x24

2點(diǎn)P(﹣1,2),向右平移4個(gè)單位長度,得到點(diǎn)Q

點(diǎn)Q的坐標(biāo)為(3,2),

n3,

拋物線為yx2mx+3

當(dāng)拋物線經(jīng)過點(diǎn)Q32)時(shí),2323m+3,解得;

當(dāng)拋物線經(jīng)過點(diǎn)P(﹣1,2)時(shí),2=(﹣12+m+3,解得m=﹣2;

當(dāng)拋物線的頂點(diǎn)在線段PQ上時(shí),2,解得m±2

結(jié)合圖象可知,m的取值范圍是m2m2

故答案為:m2m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+bk≠0)的圖象過點(diǎn)P,0),且與反比例函數(shù)m≠0)的圖象相交于點(diǎn)A﹣2,1)和點(diǎn)B

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求點(diǎn)B的坐標(biāo),并根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時(shí),一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某區(qū)2018年初中畢業(yè)生畢業(yè)后的去向,某區(qū)教育部門對(duì)部分初三學(xué)生進(jìn)行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中;C,直接進(jìn)入社會(huì)就業(yè);D,其它)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(a)、(b).請(qǐng)問:

(1)此次共調(diào)查了多少名初中畢業(yè)生?

(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

(3)若某區(qū)2018年初三畢業(yè)生共有3500人,請(qǐng)估計(jì)2019年初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為12的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個(gè)三角形重疊部分的面積為32時(shí),它移動(dòng)的距離AA′等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳生活,綠色出行”是一種環(huán)保、健康的生活方式,小麗從甲地出發(fā)沿一條筆直的公路騎行前往乙地,她與乙地之間的距離y(km)與出發(fā)時(shí)間th)之間的函數(shù)關(guān)系如圖中線段AB所示,在小麗出發(fā)的同時(shí),小明從乙地沿同一條公路汽騎車勻速前往甲地,兩人之間的距離s(km)與出發(fā)時(shí)間th)之間的函數(shù)關(guān)系如圖中折線段ADDEEF所示,則E點(diǎn)坐標(biāo)為

________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△EBF為等腰直角三角形,點(diǎn)B為直角頂點(diǎn), 四邊形ABCD是正方形.

求證:△ABE≌△CBF;

CFAE有什么特殊的位置關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cy軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),試過點(diǎn)Px軸的垂線1,再過點(diǎn)A1的垂線,垂足為Q,連接AP

(1)求拋物線的函數(shù)表達(dá)式和點(diǎn)C的坐標(biāo);

(2)若△AQP∽△AOC,求點(diǎn)P的橫坐標(biāo);

(3)如圖2,當(dāng)點(diǎn)P位于拋物線的對(duì)稱軸的右側(cè)時(shí),若將△APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)Q′,請(qǐng)直接寫出當(dāng)點(diǎn)Q′落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,E是矩形ABCD的邊BC上一點(diǎn),EFAE,分別交AC,CD于點(diǎn)M,FBGAC,垂足為GBGAE于點(diǎn)H

1)求證:△ABE∽△ECF;

2)找出與△ABH相似的三角形,并證明;

3)若EBC中點(diǎn),BC=2AB,AB=4,求EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1,在RtABCRtDBE中,∠ABC=DBE=90°,∠ACB=BED=45°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE

填空:①則的值為______;②∠EAD的度數(shù)為_______

2)類比探究

如圖2,在RtABCRtDBE中,∠ABC=DBE=90°,∠ACB=BED=60°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.請(qǐng)求出的值及∠EAD的度數(shù);

3)拓展延伸

如圖3,在(2)的條件下,取線段DE的中點(diǎn)M,連接AM、BM,若BC=4,則當(dāng)△ABM是直角三角形時(shí),求線段AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案