【題目】將一副撲克牌中點數(shù)為“2”、“3”、“4”“6”的四張牌背面朝上洗勻,先從中抽出1張牌,記錄下牌面點數(shù)為x,再從余下的3張牌中抽出1張牌,記錄下牌面點數(shù)為y.設(shè)點P的坐標(biāo)為(xy).

1)請用表格或樹狀圖列出點P所有可能的坐標(biāo).

2)求點P在拋物線yx2+x上的概率.

【答案】112種,見解析;(2

【解析】

1)利用畫樹狀圖展示所有12種等可能的結(jié)果數(shù)即可;

2)先找出點P在拋物線yx2+x上的情況數(shù),再根據(jù)概率公式求解即可.

解:(1)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù);

2)只有(2,3)在拋物線yx2+x上,

∴點P在拋物線yx2+x上的上的結(jié)果數(shù)為1,

所以點P在拋物線yx2+x上的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD,AB=6,BC=8,EBC邊上的一個動點(不與點B.C重合),連結(jié)AE,并作EFAE,交CD邊于點F,連結(jié)AF.設(shè)BE=x,CF=y.

1)求證:△ABE∽△ECF;

2)當(dāng)x為何值時,y的值為2;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,該玩具的進價為100/件,市場管理部門規(guī)定,該種玩具每件利潤不能超過進價的60%.現(xiàn)在超市的銷售單價為140元,每天可售出50件,根據(jù)市場調(diào)查發(fā)現(xiàn),如果銷售單價每上漲2元,每天銷售量會減少1件。設(shè)上漲后的銷售單價為x元,每天售出y.

1)請寫出yx之間的函數(shù)表達式并寫出x的取值范圍;

2)設(shè)超市每天銷售這種玩具可獲利w元,當(dāng)x為多少元時w最大,最大為名少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,S是矩形ABCDAD邊上一點,點E以每秒kcm的速度沿折線BSSDDC勻速運動,同時點F從點C出發(fā)點,以每秒1cm的速度沿邊CB勻速運動.已知點F運動到點B時,點E也恰好運動到點C,此時動點E,F同時停止運動.設(shè)點EF出發(fā)t秒時,△EBF的面積為.已知yt的函數(shù)圖像如圖2所示.其中曲線OMNP為兩段拋物線,MN為線段.則下列說法:

①點E運動到點S時,用了2.5秒,運動到點D時共用了4秒;

②矩形ABCD的兩鄰邊長為BC6cmCD4cm;

sinABS;

④點E的運動速度為每秒2cm.其中正確的是(  )

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB10,點P是半圓O上的一個動點,則△PAB的面積最大值是 ;

(問題探究)如圖2所示,AB、AC是某新區(qū)的三條規(guī)劃路,其中AB6kmAC3km,∠BAC60°所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點EF,即分別在、線段ABAC上選取點P、EF.由于總站工作人員每天要將物資在各物資站點間按PEFP的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PEEFFP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PEEF、FP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為 km;

(拓展應(yīng)用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB90°,OA12米,在圍墻OAOB上分別有兩個入口CD,且AC4米,DOB的中點,出口E上.現(xiàn)準備沿CEDE從入口到出口鋪設(shè)兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.

①出口E設(shè)在距直線OB多遠處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)

②已知鋪設(shè)小路CE所用的普通石材每米的造價是200元,鋪設(shè)小路DE所用的景觀石材每米的造價是400元.

請問:在上是否存在點E,使鋪設(shè)小路CEDE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把一條拋物線上橫坐標(biāo)與縱坐標(biāo)相等的點叫做這條拋物線的不動點.如圖,在平面直角坐標(biāo)系xOy中,已知拋物線yx22x,其頂點為A

1)試求拋物線yx22x不動點的坐標(biāo);

2)平移拋物線yx22x,使所得新拋物線的頂點B是該拋物線的不動點,其對稱軸與x軸交于點C,且四邊形OABC是梯形,求新拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永農(nóng)化工廠以每噸800元的價格購進一批化工原料,加工成化工產(chǎn)品進行銷售,已知每1噸化工原料可以加工成化工產(chǎn)品0.8噸,該廠預(yù)計銷售化工產(chǎn)品不超過50噸時每噸售價為1600元,超過50噸時,每超過1噸產(chǎn)品,銷售所有的化工產(chǎn)品每噸價格均會降低4元,設(shè)該化工廠生產(chǎn)并銷售了x噸化工產(chǎn)品.

1)用x的代數(shù)式表示該廠購進化工原料  噸;

2)當(dāng)x50時,設(shè)該廠銷售完化工產(chǎn)品的總利潤為y,求y關(guān)于x的函數(shù)關(guān)系式;

3)如果要求總利潤不低于38400元,那么該廠購進化工原料的噸數(shù)應(yīng)該控制在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過DDEAC,垂足為E

1)證明:DE為⊙O的切線;

2)連接OE,若BC=4,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標(biāo)為(4,2).將點A繞坐標(biāo)原點O旋轉(zhuǎn)90°后,再向左平移1個單位長度得到點A′,則過點A′的正比例函數(shù)的解析式為_____

查看答案和解析>>

同步練習(xí)冊答案