【題目】如圖,在中,,,點的中點,以點為圓心作圓心角為的扇形,點恰在弧上,則圖中陰影部分的面積為(

A. B. C. D.

【答案】D

【解析】

連接CD,作DMBC,DNAC,證明DMG≌△DNH,則S四邊形DGCH=S四邊形DMCN,求得扇形FDE的面積,則陰影部分的面積即可求得.

連接CD,作DMBC,DNAC.

CA=CB,ACB=90°,點DAB的中點,

DC=AB=1,四邊形DMCN是正方形,DM=

則扇形FDE的面積是:

CA=CB,ACB=90°,點DAB的中點,

CD平分∠BCA,

又∵DMBC,DNAC,

DM=DN,

∵∠GDH=MDN=90°,

∴∠GDM=HDN,

則在DMGDNH中,

∴△DMG≌△DNH(AAS),

S四邊形DGCH=S四邊形DMCN=

則陰影部分的面積是:-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD與正方形CEFG,點ECD上,點GBC的延長線上,MAF的中點,連接DM,EM

1)填空:DMEM數(shù)量關(guān)系和位置關(guān)系為   (直接填寫);

2)若AB4,設(shè)CEx0x4),△MEF面積為y,求y關(guān)于x的函數(shù)關(guān)系式[可利用(1)的結(jié)論],并求出y的最大值;

3)如果將正方形CEFG繞點C順時針旋轉(zhuǎn)任意角度,我們發(fā)現(xiàn)DMEM數(shù)量關(guān)系與位置關(guān)系仍未發(fā)生改變.

①若正方形ABCD邊長AB13,正方形CEFG邊長CE5,當(dāng)D,E,F三點旋轉(zhuǎn)至同一條直線上時,求出MF的長;

②證明結(jié)論:正方形CEFG繞點C順時針旋轉(zhuǎn)任意角度,DMEM數(shù)量關(guān)系與位置關(guān)系仍未發(fā)生改變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)分別是,,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)北京市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,北京市近五年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2017年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯誤的是(

A.2013年至2017年北京市國民生產(chǎn)總值逐年增加

B.2017年第二產(chǎn)業(yè)生產(chǎn)總值為5 320億元

C.2017年比2016年的國民生產(chǎn)總值增加了10%

D.若從2018年開始,每一年的國民生產(chǎn)總值比前一年均增長10%,到2019年的國民生產(chǎn)總值將達到33 880億元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,OAC上一點以O為圓心,OC長為半徑作圓,與BC相切于點C,過點AADBOBO延長線于點D,且∠AOD=BAD

1)求證:ABO的切線;

2)若BC=6,tanABC,求OD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E是平行四邊形ABCDDA邊的延長線上一點,且AD2AE,連接EC分別交AB,BD于點F,G

1)求證:BF2AF

2)若BD20cm,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,DEF分別為△ABCACABBC上的點,∠A=∠1=∠C,DE=DF.下面的結(jié)論一定成立的是(

A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班共30名同學(xué)參加了網(wǎng)絡(luò)上第二課堂的禁毒知識競賽(共20道選擇題),學(xué)習(xí)委員對競賽結(jié)果進行了統(tǒng)計,發(fā)現(xiàn)每個人答題正確題數(shù)都超過15題.通過統(tǒng)計制成了下表,結(jié)合表中信息,解答下列問題:

答對題數(shù)

16

17

18

19

20

人數(shù)

3

9

6

4

1)補統(tǒng)計表中數(shù)據(jù):

2)求這30名同學(xué)答對題目的平均數(shù)、眾數(shù)和中位數(shù);

3)答題正確率為100%4名同學(xué)中恰好是2名男同學(xué)和2名女同學(xué),現(xiàn)從中隨機抽取2名同學(xué)參加學(xué)校禁毒知識搶答大賽,問抽到11女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C

1)判斷△ABC的形狀;

2)過點C的直線yx軸于點H,若點P是第四象限內(nèi)拋物線上的一個動點,且在對稱軸的右側(cè),過點PPQy軸交直線CH于點Q,作PNx軸交對稱軸于點N,以PQ、PN為鄰邊作矩形PQMN,當(dāng)矩形PQMN的周長最大時,在y軸上有一動點K,x軸上有一動點T,一動點G從線段CP的中點R出發(fā)以每秒1個單位的速度沿RKT的路徑運動到點T,再沿線段TB以每秒2個單位的速度運動到B點處停止運動,求動點G運動的最少時間及此時點T的坐標(biāo);

3)如圖2,將△ABC繞點B順時針旋轉(zhuǎn)至△A'BC'的位置,點AC的對應(yīng)點分別為A'、C',且點C'恰好落在拋物線的對稱軸上,連接AC'.點Ey軸上的一個動點,連接AEC'E,將△AC'E沿直線C'E翻折為△AC'E,是否存在點A',使得△BAA″為等腰三角形?若存在,請求出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案