【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個平行四邊形,第二幅圖中有3個平行四邊形,第三幅圖中有5個平行四邊形,則第6幅和第7幅圖中合計有( )個平行四邊形

A.22B.24C.26D.28

【答案】B

【解析】

1幅可看作2×1-1=1,第2幅可看作2×2-1=3,第3幅可看作2×3-1=5,第4幅可看作2×4-1=7;從而求得第n幅圖共有的平行四邊形數(shù),即可求得答案.

解:根據(jù)圖形分析可知:
1幅時,有2×1-1=1個平行四邊形;
2幅時,有2×2-1=3個平行四邊形;
3幅時,有2×3-1=5個平行四邊形;
4幅時,有2×4-1=7個平行四邊形;
;
n幅時,有2×n-1=2n-1個平行四邊形;
∴第6幅圖時,有2×6-1=11個平行四邊形,
7幅圖,有2×7-1=13個平行四邊形,
∴第6幅和第7幅圖中合計有11+13=24個平行四邊形;
故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+m與反比例函數(shù) 相交于點A(6,2),與x軸交于B點,點C在直線AB上且 .過B、C分別作y軸的平行線交雙曲線 于D、E兩點.

(1)求m、k的值;
(2)求點D、E坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于點Pab),點Qcd),如果abcd,那么點P與點Q就叫作等差點.例如:點P4,2),點Q(﹣1,﹣3),因421﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H2,3),點N(﹣2,﹣3),MNy軸,HMx軸,點P是直線yx+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共個,小李做摸球?qū)嶒灒龑⒑凶永锩娴那驍噭蚝髲闹须S機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,如表是實驗中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)

摸到白球的次數(shù)

摸到白球的頻率

請估計:當實驗次數(shù)為次時,摸到白球的頻率將會接近________;(精確到

假如你摸一次,你摸到白球的概率(摸到白球)________;

如何通過增加或減少這個不透明盒子內(nèi)球的具體數(shù)量,使得在這個盒子里每次摸到白球的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖,在直角坐標系xOy中,A(﹣1,0),B(3,0),將A,B同時分別向上平移2個單位,再向右平移1個單位,得到的對應(yīng)點分別為D,C,連接AD,BC.

(1)直接寫出點C,D的坐標:C ,D ;

(2)四邊形ABCD的面積為

(3)點P為線段BC上一動點(不含端點),連接PD,PO.求證:∠CDP+BOP=OPD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線相交于點0,AC2,BD.將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,分別探討下面四個圖形中∠APC與∠PAB、∠PCD的關(guān)系,請你從所得到的關(guān)系中任選一個加以說明。(適當添加輔助線,其實并不難)

(1) (2) (3) (4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y2xy=﹣x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l1于點A1,過點A1y軸的垂線交l2于點A2,過點A2x軸的垂線交l1于點A3,過點A3y軸的垂線交l2于點A4,,依次進行下去,則點A2019的坐標為( 。

A.21009,21010B.(﹣21009,21010

C.21009,﹣21010D.(﹣21009,﹣21010

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC是等邊三角形,點D是射線BC上的一個動點(D不與點B,C重合),△ADE是以AD為邊的等邊三角形,過點EBC的平行線,交射線AC于點G,連接BE

1)如圖1所示,當點D在線段BC上時,求證:四邊形BCGE是平行四邊形;

2)如圖2所示,當點DBC的延長線上時,(1)中的結(jié)論是否成立?并請說明理由;

3)當點D運動到什么位置時,四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

同步練習冊答案