【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.
(1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,該校有幾種購買方案?
(3)上面的哪種方案費(fèi)用最低?按費(fèi)用最低方案購買需要多少錢?
【答案】(1)每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元;(2)共有三種方案:方案一:購進(jìn)電腦15臺(tái),電子白板15臺(tái);方案二:購進(jìn)電腦16臺(tái),電子白板14臺(tái);方案三:購進(jìn)電腦17臺(tái),電子白板13臺(tái);(3)選擇方案三最省錢,即購買電腦17臺(tái),電子白板13臺(tái)最省錢.需要28萬元.
【解析】
(1)先設(shè)每臺(tái)電腦x萬元,每臺(tái)電子白板y萬元,根據(jù)購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元列出方程組,求出x,y的值即可;(2)先設(shè)需購進(jìn)電腦a臺(tái),則購進(jìn)電子白板(30-a)臺(tái),根據(jù)需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元列出不等式組,求出a的取值范圍,再根據(jù)a只能取整數(shù),得出購買方案;(3)根據(jù)每臺(tái)電腦的價(jià)格和每臺(tái)電子白板的價(jià)格,算出總費(fèi)用,再進(jìn)行比較,即可得出最省錢的方案.
解:(1)設(shè)每臺(tái)電腦x萬元,每臺(tái)電子白板y萬元,
根據(jù)題意得:
解得:,
答:每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元.
(2)設(shè)需購進(jìn)電腦a臺(tái),則購進(jìn)電子白板(30-a)臺(tái),
則,
解得:15≤a≤17,即a=15、16、17.
故共有三種方案:
方案一:購進(jìn)電腦15臺(tái),電子白板15臺(tái);
方案二:購進(jìn)電腦16臺(tái),電子白板14臺(tái);
方案三:購進(jìn)電腦17臺(tái),電子白板13臺(tái).
(3)方案一:總費(fèi)用為15×0.5+1.5×15=30(萬元);
方案二:總費(fèi)用為16×0.5+1.5×14=29(萬元),
方案三:17×0.5+1.5×13=28(萬元),
∵28<29<30,
∴選擇方案三最省錢,即購買電腦17臺(tái),電子白板13臺(tái)最省錢.需要28萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形AOBC如圖放置,A(3,4),先將菱形向左平移9個(gè)單位長度,再向下平移1個(gè)單位,然后沿x軸翻折,最后繞坐標(biāo)軸原點(diǎn)O旋轉(zhuǎn)90°得到點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)P,則點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30,∠AOB內(nèi)有一定點(diǎn)P,且OP=10.在OA上有一動(dòng)點(diǎn)Q,OB上有一動(dòng)點(diǎn)R.若ΔPQR周長最小,則最小周長是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,AM∥CN,求證:
①∠MAB+∠ABC+∠BCN=360°;
②∠MAE+∠AEF+∠EFC+∠FCN=540°;
(2)如圖2,若平行線AM與CN間有n個(gè)點(diǎn),根據(jù)(1)中的結(jié)論寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,,,D是AC邊上的一個(gè)動(dòng)點(diǎn),將沿BD所在直線折疊,使點(diǎn)A落在點(diǎn)E處.
如圖,若點(diǎn)D是AC的中點(diǎn),連接求證:四邊形BCED是平行四邊形;
如圖,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小燁在探究數(shù)軸上兩點(diǎn)間距離時(shí)發(fā)現(xiàn):若兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的橫坐標(biāo)分別為,則兩點(diǎn)間距離為;若兩點(diǎn)在軸上或與軸平行,兩點(diǎn)的縱坐標(biāo)分別為,則兩點(diǎn)間距離為.據(jù)此,小燁猜想:對(duì)于平面內(nèi)任意兩點(diǎn),兩點(diǎn)間的距離為.
(1)請(qǐng)你利用下圖,試證明:;
(2)若,試在軸上求一點(diǎn),使的距離最短,并求出的最小值和點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊(duì)用甲、乙兩臺(tái)隧道挖掘機(jī)從兩個(gè)方向挖掘同一條隧道,因?yàn)榈刭|(zhì)條件不同,甲、乙的挖掘速度不同,已知甲、乙同時(shí)挖掘天,可以挖米,若甲挖天,乙挖天可以挖掘米.
(1)請(qǐng)問甲、乙挖掘機(jī)每天可以挖掘多少米?
(2)若乙挖掘機(jī)比甲挖掘每小時(shí)多挖掘米,甲、乙每天挖掘的時(shí)間相同,求甲每小時(shí)挖掘多少米?
(3)若隧道的總長為米,甲、乙挖掘機(jī)工作天后,因?yàn)榧淄诰驒C(jī)進(jìn)行設(shè)備更新,乙挖掘機(jī)設(shè)備老化,甲比原來每天多挖米,同時(shí)乙比原來少挖米.最終,甲、乙兩臺(tái)挖掘機(jī)在相同時(shí)間里各完成隧道總長的一半,請(qǐng)用含,的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在圖一中,將等邊繞BC邊中點(diǎn)D順時(shí)針旋轉(zhuǎn)至,直線AG與直線CF交于點(diǎn)求證.小明同學(xué)的思路是這樣的:通過證明∽得到,從而得到,繼續(xù)推理就可以使問題得到解決.
請(qǐng)根據(jù)小明的思路,求證:;
愛動(dòng)腦筋的小明把問題做了進(jìn)一步思考,他想:如果把題目的“等邊”改成“等腰直角,其中,”,如圖二,中的結(jié)論還成立嗎?如果成立,求此時(shí)線段BM的最大值.
小明繼續(xù)大膽設(shè)問:如圖三,在中,,,將這樣的按照題目中的方式旋轉(zhuǎn),請(qǐng)直接寫出AG與CF的位置關(guān)系以及線段BM的變化范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com